Вопрос задан 02.07.2023 в 03:36. Предмет Алгебра. Спрашивает Duysenbaev Islam.

Решите биквадратное уравнение(х²-3)²+х²-3=2​​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федотов Андрей.

Объяснение:

(x²-3)²+x²-3=2

x^4-3x²+9+x²-3-2=0

x^4-2x²+4=0

зробимо заміну t=x²

t²-2t+4=0

D=4-16=-12

рівняння немає розв'язків

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим биквадратное уравнение пошагово:

Уравнение: (x² - 3)² + x² - 3 = 2

  1. Раскроем квадрат в первой скобке: (x² - 3)² = x⁴ - 6x² + 9.
  2. Подставим это обратно в уравнение: x⁴ - 6x² + 9 + x² - 3 = 2.
  3. Объединим подобные слагаемые: x⁴ - 5x² + 6 = 2.
  4. Переносим все слагаемые в одну сторону: x⁴ - 5x² + 4 = 0.

Теперь мы имеем биквадратное уравнение x⁴ - 5x² + 4 = 0. Давайте проведем замену переменной, чтобы упростить его:

Пусть y = x². Тогда уравнение примет вид: y² - 5y + 4 = 0.

Теперь это квадратное уравнение. Решим его с помощью квадратного трехчлена или факторизации:

  1. Разложим уравнение на множители: (y - 4)(y - 1) = 0.
  2. Получаем два возможных значения y: y = 4 и y = 1.

Теперь вернемся к исходной переменной x:

  1. Для y = 4: x² = 4 => x = ±2.
  2. Для y = 1: x² = 1 => x = ±1.

Таким образом, уравнение имеет четыре корня: x = 2, x = -2, x = 1 и x = -1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос