
(x-2) (x-4) (x-9)>0


Ответы на вопрос

Ответ:
__________
__________




To solve the inequality (x-2)(x-4)(x-9) > 0, we can use the method of sign charts.
Step 1: Find the critical points by setting each factor equal to zero and solving for x:
x - 2 = 0 --> x = 2 x - 4 = 0 --> x = 4 x - 9 = 0 --> x = 9
Step 2: Plot the critical points on a number line:
lua 2 4 9
|-----|-----|-----|
Step 3: Test the intervals between the critical points:
For the interval (-∞, 2), we can choose x = 0 as a test point: (0 - 2)(0 - 4)(0 - 9) = (-2)(-4)(-9) = -72, which is negative.
For the interval (2, 4), we can choose x = 3 as a test point: (3 - 2)(3 - 4)(3 - 9) = (1)(-1)(-6) = 6, which is positive.
For the interval (4, 9), we can choose x = 6 as a test point: (6 - 2)(6 - 4)(6 - 9) = (4)(2)(-3) = -24, which is negative.
For the interval (9, ∞), we can choose x = 10 as a test point: (10 - 2)(10 - 4)(10 - 9) = (8)(6)(1) = 48, which is positive.
Step 4: Determine the sign of the expression in each interval:
lua 2 4 9
|-----|-----|-----|
- + - +
Step 5: Write the solution based on the sign chart:
The inequality (x-2)(x-4)(x-9) > 0 is satisfied when x is in the intervals (-∞, 2) and (4, 9).
Therefore, the solution to the inequality is x ∈ (-∞, 2) ∪ (4, 9).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili