
3 * 4^x - 2 * 9^x + 6^x < 0


Ответы на вопрос

Решение:
Все слагаемые разделим на 6^x > 0;
3* 4^x / 6^x + 2*9^x / 6^x - 5* 6^x / 6^x < 0;
3 * (4/6)^x + 2* (9/6)^x - 5 *1 < 0;
3*(2/3)^x + 2 * (3/2)^x - 5 < 0;
(2/3)^x = t > 0; (3/2)^t = 1 / t ;
3 * t + 2 / t - 5 < 0; * t ≠ 0;
(3t^2 + 2 - 5t) / t < 0;
(3t^2 - 5 t + 2) / t < 0;
t > 0; ⇒ 3 t^2 - 5t + 2 < 0
t1 = 1; t 2 = 2/3;
3(t - 1)*(t - 2/3) <0;
используем метод интервалов
+ - +
(0)------(2/3)-------(1)---------- t
при t > 0; ⇒ t ∈ (2/3; 1);
составим двойное неравенство :
2/3 < (2/3)^x < 1;
(2/3)^1 < (2/3)^x < (2/3)^0;
2/3 < 1; ⇒ 0 < x < 1.
Ответ :
х∈ (0; 1)



To solve the inequality , we need to find the values of that satisfy this inequality. Let's break down the steps:
Factor out common terms: .
Substitute with : .
Factor out : .
Now we have a product of terms involving . To analyze the sign of this expression, we can examine the signs of each factor:
- is always positive for real values of .
- The term is more complex and needs further analysis.
We need to determine the conditions under which the second term is negative. To do this, let's look at the term in isolation and find its critical points. We'll analyze the behavior of this term for different values of :
- As becomes very large, grows much faster than , so the term becomes negative.
- As becomes very small (approaching negative infinity), tends to infinity faster than , making the term positive.
- For some value of , the term will transition from positive to negative. This is the point we're interested in.
Let's find the value of for which the term transitions from positive to negative:
.
Solving this equation numerically for will give us the approximate point at which the transition occurs. Once we have that point, we can determine the intervals of values for which the original inequality is satisfied.
Please note that finding the exact analytical solution for might not be feasible, and numerical methods or graphing tools might be needed for accurate solutions.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili