Розв'яжіть рівняння: 1) (2х — 1) (15 + 9x) - 6x (3х - 5) = 87;2) (14х — 1) (2 + х) = (2x – 8) (7х
+ 1);3) (х + 10) (х – 5) - (х – 6) (х + 3) = 16;4) (3х + 7) (8х + 1) = (6x - 7) (4x - 1) + 93xОтветы на вопрос
Ответ:
1)30х+18хдо квадрату-15-9х-18х до квадрату +30х=87
51х-15=87
51х-15-87=0
х-2=0
х=2
3)х1=6,х2=8
4)3х-56х-7=6х-28х+7+93х
-53х-7=71х+7
-53х-71х=7+7
-124х=14
х=-0,1
- (2x - 1)(15 + 9x) - 6x(3x - 5) = 87
First, distribute and simplify each term:
(2x - 1)(15) + (2x - 1)(9x) - (6x)(3x) + (6x)(5) = 87
30x - 15 + 18x^2 - 9x - 18x + 30 = 87
Now, combine like terms:
18x^2 + 3x - 15 + 30 - 18x = 87
18x^2 + 3x + 15 - 18x = 87
Now, move all terms to one side to set the equation equal to zero:
18x^2 + 3x + 15 - 18x - 87 = 0
Now, simplify the equation further:
18x^2 - 15 - 87 = 0
18x^2 - 102 = 0
Now, divide by the common factor (6):
3x^2 - 17 = 0
Now, you have a quadratic equation. To solve it, you can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 3, b = 0, and c = -17. Plug these values into the quadratic formula:
x = (0 ± √(0 - 4(3)(-17))) / (2(3))
x = (± √(204)) / 6
x = (± 2√51) / 6
x = (± √51) / 3
So, the solutions to the equation are:
x = (√51) / 3 and x = (-√51) / 3
- (14x - 1)(2 + x) = (2x - 8)(7x + 1)
First, distribute and simplify each term:
(14x - 1)(2) + (14x - 1)(x) = (2x - 8)(7x) + (2x - 8)(1)
28x - 2 + 14x^2 - x = 14x^2 - 56x + 2x - 8
Now, combine like terms:
14x^2 + 28x - 2 - x - 14x^2 + 56x - 2x + 8 = 0
14x^2 + 25x + 6 - 14x^2 = 0
Now, simplify the equation further:
25x + 6 = 0
Subtract 6 from both sides:
25x = -6
Now, divide by 25:
x = -6/25
So, the solution to the equation is:
x = -6/25
- (x + 10)(x - 5) - (x - 6)(x + 3) = 16
First, distribute and simplify each term:
(x^2 - 5x + 10x - 50) - (x^2 + 3x - 6x - 18) = 16
Now, combine like terms:
x^2 + 5x - 50 - x^2 - 3x + 6x + 18 = 16
x^2 + 5x - x^2 - 3x + 6x - 50 + 18 = 16
Now, simplify the equation further:
5x = 16 + 50 - 18
5x = 48
Now, divide by 5:
x = 48/5
So, the solution to the equation is:
x = 48/5
- (3x + 7)(8x + 1) = (6x - 7)(4x - 1) + 93x
First, distribute and simplify each term:
(24x^2 + 3x + 56x + 7) = (24x^2 - 6x - 28x + 7) + 93x
Now, combine like terms:
(24x^2 + 59x + 7) = (24x^2 + 59x + 7) + 93x
Now, subtract (24x^2 + 59x + 7) from both sides:
0 = 93x
Now, divide by 93:
x = 0
So, the solution to the equation is:
x = 0
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
