Вопрос задан 28.06.2023 в 23:28. Предмет Алгебра. Спрашивает Листратенко Ксения.

Найдите tg A если:a) cos A = 5/13​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пивовар Даниэлла.

Ответ:

sin² + cos² = 1

По этой формуле находим синус:

sin²= 1-25/169

sin=12/13

tg=sin/cos

tg= 12/13 : 5/13= 12/5 = 2,4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения значения тангенса угла A, когда известен косинус угла A, можно воспользоваться следующей формулой:

tg(A) = √(1 - cos²(A)) / cos(A)

В данном случае, cos(A) = 5/13. Подставим это значение в формулу:

tg(A) = √(1 - (5/13)²) / (5/13)

tg(A) = √(1 - 25/169) / (5/13)

tg(A) = √(144/169) / (5/13)

tg(A) = (12/13) / (5/13)

tg(A) = 12/5

Таким образом, tg(A) = 12/5.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос