
-x²+3=0-0,1x²+10=0


Ответы на вопрос

Объяснение:
-x²=-3
x=±√3
-0,1x²=-10
x²=100
x=±10
y²=1/9
y=±1/9



It looks like you've provided two quadratic equations. Let's solve each of them:
- -x² + 3 = 0:
To solve for x, you can start by moving the constant term to the other side of the equation:
-x² = -3
Now, divide both sides by -1 to isolate x²:
x² = 3
To find the value of x, take the square root of both sides. Remember to consider both the positive and negative square roots:
x = ±√3
So, the solutions for the first equation are x = √3 and x = -√3.
- 0.1x² + 10 = 0:
To solve for x in this equation, start by subtracting 10 from both sides:
0.1x² = -10
Now, divide both sides by 0.1 to isolate x²:
x² = -10 / 0.1 x² = -100
Take the square root of both sides, considering both positive and negative square roots:
x = ±√(-100)
However, the square root of a negative number is not a real number. It is a complex number. So, there are no real solutions to the second equation. The solutions are complex numbers:
x = ±10i
Here, "i" represents the imaginary unit, where i² = -1. So, the solutions are x = 10i and x = -10i.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili