
Найди периметр треугольника B CA, если CF - медиана, и
известно, что:  FB = 150мм , AC = 500ммиBC= 400мм Ответ: P( B CA ) = 

Ответы на вопрос

Ответ:
120 см
Объяснение:
CF - медиана, и делит BA на две равные части, следовательно BA = 2FB = 30 см
P = BA + AC + BC = 30 + 50 + 40 = 120 см



Для нахождения периметра треугольника BCA, где CF - медиана, мы можем использовать свойство медианы треугольника. Медиана делит сторону треугольника пополам, и её длина равна половине длины стороны, которую она делит.
Известно: FB = 150 мм (длина медианы, которая делит сторону AC) AC = 500 мм BC = 400 мм
По определению медианы: CF = 1/2 * AC = 1/2 * 500 мм = 250 мм
Теперь нам нужно найти длины оставшихся двух сторон треугольника BCA. Мы можем использовать теорему Пифагора, так как у нас есть прямоугольный треугольник CFB:
BC^2 = CF^2 + FB^2 BC^2 = 250^2 + 150^2 BC^2 = 62500 + 22500 BC^2 = 85000
BC = √85000 BC ≈ 291.55 мм
Теперь у нас есть длины всех трех сторон треугольника BCA: BC, CA и AB. Давайте найдем периметр, сложив их:
P(BCA) = BC + CA + AB P(BCA) = 291.55 мм + 500 мм + 400 мм P(BCA) = 1191.55 мм
Ответ: Периметр треугольника BCA равен 1191.55 мм.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili