
Помогите пожалуйста решить |x^2-1|+|x^2-9|=x+18


Ответы на вопрос

Объяснение:
|x²-1|+|x²-9|=x+18
Находим нули подмодульных выражений:
x²-1=0 (x+1)*(x-1)=0 x₁=-1 x₂=1.
x²-9=0 (x+3)*(x-3)=0 x₃=-3 x₄=3. ⇒
-∞____-3____-1____1____3____+∞
1) x∈(-∞;-3)
x²-1+x²-9=x+18
2x^2-x-28=0
D=225 √D=15
x₁=-3,5 ∈ x₂=4∉.
2) x∈[-3;-1].
x²-1+(-(x²-9))=x+18
x²-1-x²+9=x+18
8=x+18
x=-10 ∉.
3) x∈(-1;1)
-(x^2-1)+(-(x^2-9))=x+18
-x²+1-x²+9=x+18
-2x²+10-x-18=0
2x²+x+8=0
D=-63 ⇒ Уравнение не имеет действительных корней.
4) x∈[1;3].
x²-1+(-(x²-9))=x-18
x-1-x^2+9=x+18
x=-10 ∉,
5) x∈(3;+∞)
x²-1+x²-9=x+18
2x²-10=x+18
2x^2-x-28=0
D=225 √D=15
x₁=-3,5 ∉ x₂=4 ∈.
Ответ: x₁=-3,5 x₂=4.



Ответ:
Ответ: x1=-7/2, x2=4
Объяснение:
|x²-1|+|x²-9|=x+18
Перенесем переменную в левую часть.
|x²-1|+|x²-9|-x=18
Рассмотрим все возможные случаи:
x²-1+x²-9-x=18, x²-1>=0, x²-9>=0.
-(x²-1)+x²-9-x=18, x²-1<0, x²-9>=0.
x²-1-(x²-9)-x=18, x²-1>=0, x²-9<0.
-(x²-1)-(x²-9)-x=18, x²-1<0, x²-9<0.
Решить все относительно х.
x=-7/2, (-∞,-1] [1,+∞); (-∞,-3] [3,+∞).
x=4
x=-26, (-1,1); (-∞,-3] [3,+∞).
x=-10, (-∞,-1] [1,+∞); (-3,3).
x∉R, (-1,1); (-3,3).
Найти пресечение
x=-7/2, (-∞,-3] [3,+∞).
x=4
x=-26, x∉∅
x=-10, (-3,-1] [1,+3).
x∉R, (-1,1).
Найти пресечение
x=-7/2
x=4
x∉∅
x∉∅
x∉R
Ответ: x1=-7/2, x2=4



Чтобы решить уравнение , давайте рассмотрим четыре возможных случая, в зависимости от значений выражений и , для которых модульные функции в уравнении обращаются в ноль.
Случай и :
В этом случае у нас есть два уравнения:
Упростим его:
Решим это квадратное уравнение. Используем дискриминант :
Дискриминант положителен, поэтому у нас есть два корня:
Оба корня удовлетворяют условиям этого случая.
Случай и :
Здесь положительно, но отрицательно. Это возможно только в интервале .
Итак, у нас есть два уравнения:
Упростим его:
Решим это квадратное уравнение. Дискриминант:
Положительный дискриминант, два корня:
Опять же, оба корня удовлетворяют условиям этого случая.
Случай и :
Это невозможно, так как всегда положительно при , и всегда положительно при .
Случай и :
В этом случае оба квадратных выражения отрицательны. Невозможно, так как сумма двух отрицательных чисел не может быть равна положительному числу ().
Таким образом, решениями уравнения являются и .


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili