
А) (х + 4)2 = 3х + 40; б) (2x – 3)2 = 11х - 19; в) 3(х + 4)2 = 10x + 32; г) 15х2 +17 = 15(х + 1)2
= =

Ответы на вопрос

Ответ:А. -32; Б. 13/7; В -2; Г. 17/30
Объяснение:



Task:
The task provided consists of four equations, and we need to solve each equation for the variable x. Let's solve each equation step by step.Equation a: (х + 4)2 = 3х + 40
To solve this equation, we can expand the square on the left side and then simplify the equation.Expanding the square: (х + 4)2 = (х + 4)(х + 4) = х2 + 8х + 16
Now we can rewrite the equation: х2 + 8х + 16 = 3х + 40
Next, let's move all the terms to one side of the equation: х2 + 8х - 3х + 16 - 40 = 0
Simplifying: х2 + 5х - 24 = 0
Now we have a quadratic equation. We can solve it by factoring or using the quadratic formula. Let's use factoring in this case.
Factoring: (х + 8)(х - 3) = 0
Setting each factor equal to zero: х + 8 = 0 or х - 3 = 0
Solving for x: х = -8 or х = 3
Therefore, the solutions for equation a are x = -8 and x = 3.
Equation b: (2x – 3)2 = 11х - 19
Following the same steps as before, let's solve this equation.Expanding the square: (2x - 3)2 = (2x - 3)(2x - 3) = 4x2 - 12x + 9
Rewriting the equation: 4x2 - 12x + 9 = 11x - 19
Moving all the terms to one side: 4x2 - 12x - 11x + 9 + 19 = 0
Simplifying: 4x2 - 23x + 28 = 0
This is another quadratic equation. Let's solve it using factoring.
Factoring: (4x - 7)(x - 4) = 0
Setting each factor equal to zero: 4x - 7 = 0 or x - 4 = 0
Solving for x: x = 7/4 or x = 4
Therefore, the solutions for equation b are x = 7/4 and x = 4.
Equation c: 3(х + 4)2 = 10x + 32
Let's solve this equation using the same steps.Expanding the square: 3(х + 4)2 = 3(х + 4)(х + 4) = 3(х2 + 8х + 16) = 3х2 + 24х + 48
Rewriting the equation: 3х2 + 24х + 48 = 10x + 32
Moving all the terms to one side: 3х2 + 24х - 10x + 48 - 32 = 0
Simplifying: 3х2 + 14х + 16 = 0
This is another quadratic equation. Let's solve it using factoring.
Factoring: (3x + 4)(x + 4) = 0
Setting each factor equal to zero: 3x + 4 = 0 or x + 4 = 0
Solving for x: x = -4/3 or x = -4
Therefore, the solutions for equation c are x = -4/3 and x = -4.
Equation d: 15х2 + 17 = 15(х + 1)2
Let's solve this equation using the same steps.Expanding the square: 15(х + 1)2 = 15(х + 1)(х + 1) = 15(х2 + 2х + 1) = 15х2 + 30х + 15
Rewriting the equation: 15х2 + 17 = 15х2 + 30х + 15
Moving all the terms to one side: 15х2 - 15х2 + 30х - 17 + 15 = 0
Simplifying: 30х - 2 = 0
Solving for x: 30х = 2 х = 2/30 х = 1/15
Therefore, the solution for equation d is x = 1/15.
In summary, the solutions for the given equations are: a) x = -8, x = 3 b) x = 7/4, x = 4 c) x = -4/3, x = -4 d) x = 1/15
Please let me know if you need any further assistance!


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili