Игральный кубик бросают дважды. Известно, что хотя бы раз выпало 2. Найдите вероятность того, что в
сумме выпадет не меньше чем 5.Ответы на вопрос
Ответ:
Вероятность равна 2/3
Объяснение:
Чтоб вышла сумма больше или равная пяти, должно выпасть 3,4,5 или 6 (четыре варианта). На игральной кости 6 чисел. Вероятность равна количеству удачных исходов ÷ на количество всех исходов.
4/6, сокращаем = 2/3
Problem Analysis
We are given that a fair six-sided die is rolled twice. We know that at least once a 2 is rolled. We need to find the probability that the sum of the two rolls is at least 5.Solution
To find the probability, we need to determine the total number of favorable outcomes and the total number of possible outcomes.Let's consider the possible outcomes when rolling the die twice: - The first roll can be any number from 1 to 6. - The second roll can also be any number from 1 to 6.
To find the total number of possible outcomes, we multiply the number of possibilities for each roll: 6 * 6 = 36.
Now let's consider the favorable outcomes, i.e., the outcomes where the sum of the two rolls is at least 5. We can calculate these outcomes by listing all the possible combinations:
- The sum of 5 can be obtained in the following ways: (1, 4), (2, 3), (3, 2), (4, 1). - The sum of 6 can be obtained in the following ways: (1, 5), (2, 4), (3, 3), (4, 2), (5, 1). - The sum of 7 can be obtained in the following ways: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1). - The sum of 8 can be obtained in the following ways: (2, 6), (3, 5), (4, 4), (5, 3), (6, 2). - The sum of 9 can be obtained in the following ways: (3, 6), (4, 5), (5, 4), (6, 3). - The sum of 10 can be obtained in the following ways: (4, 6), (5, 5), (6, 4). - The sum of 11 can be obtained in the following ways: (5, 6), (6, 5). - The sum of 12 can be obtained in the following way: (6, 6).
Counting these favorable outcomes, we find that there are 30 possible outcomes where the sum of the two rolls is at least 5.
Therefore, the probability that the sum of the two rolls is at least 5 is given by the ratio of the number of favorable outcomes to the number of possible outcomes:
Probability = Number of Favorable Outcomes / Number of Possible Outcomes
Probability = 30 / 36
Simplifying the fraction, we get:
Probability = 5 / 6
So, the probability that the sum of the two rolls is at least 5 is 5/6.
Answer
The probability that the sum of the two rolls is at least 5 is 5/6.Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
