Вопрос задан 17.06.2023 в 04:00. Предмет Алгебра. Спрашивает Шеметова Настя.

Найдите стороны прямоугольника, площадь которого равна 54 см^2, а одна из сторон на 3 см больше

другой​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Стронг Ооо.

Ответ:

9 см; 6 см

Объяснение:

Пусть длина прямоугольника х см, тогда ширина х-3 см. По условию

х(х-3)=54

х²-3х-54=0

По теореме Виета х=-6 (не подходит)  х=9.

Длина прямоугольника 9 см, ширина 9-3=6 см.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем использовать формулу для площади прямоугольника: S = a * b, где S - площадь, a и b - стороны прямоугольника.

По условию, площадь прямоугольника равна 54 см². Пусть одна из сторон равна x см. Тогда другая сторона будет равна (x + 3) см, так как одна сторона на 3 см больше другой.

Подставляя значения в формулу для площади прямоугольника, получаем следующее уравнение:

54 = x * (x + 3)

Раскрываем скобки:

54 = x² + 3x

Полученное уравнение является квадратным уравнением. Для его решения можно привести его к стандартному виду и применить квадратное уравнение. Перенесем все члены в левую часть уравнения:

x² + 3x - 54 = 0

Теперь мы можем решить это квадратное уравнение. Можно воспользоваться факторизацией, квадратным трехчленом или квадратным корнем. В данном случае, проще всего воспользоваться квадратным корнем.

Используя квадратный корень, получаем два возможных значения для x:

x₁ = (-3 + √(3² + 4 * 1 * 54)) / (2 * 1) x₂ = (-3 - √(3² + 4 * 1 * 54)) / (2 * 1)

Раскрываем скобки под корнем:

x₁ = (-3 + √(9 + 216)) / 2 x₂ = (-3 - √(9 + 216)) / 2

Выполняем вычисления под корнем:

x₁ = (-3 + √(225)) / 2 x₂ = (-3 - √(225)) / 2

Вычисляем корень:

x₁ = (-3 + 15) / 2 = 12/2 = 6 x₂ = (-3 - 15) / 2 = -18/2 = -9

Так как стороны не могут быть отрицательными, мы выбираем положительное значение x₁ = 6. Тогда другая сторона будет равна (6 + 3) = 9.

Итак, стороны прямоугольника равны 6 см и 9 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос