
ПОМОГИТЕ ПОЖАЛУЙСТА!! дам 40 баллов!! Четырехугольник АВСD задан координатами своих вершин A(-1;1)
, B(3;3), C(2;-2), D(-2;-1). Найдите синус угла между его диагоналями.

Ответы на вопрос

Ответ:
Вектора
AC (3;-3) Длина 3√2
BD (-5;-4) Длина √(5^2+4^2)=√41
Косинус искомого угла
| AC * BD | / | AC | / | BD | = | 3*(-5)+3*4| / 3√2 / √41 = 1 / √82
Синус
√ ( 1 - 1/82) = 9 / √ 82
Объяснение:



Finding the Diagonals of Quadrilateral ABCD
To find the diagonals of quadrilateral ABCD, we need to determine the lengths of the line segments connecting the opposite vertices. The diagonals of ABCD are AC and BD.
The coordinates of the given vertices are: A(-1, 1) B(3, 3) C(2, -2) D(-2, -1)
Using the distance formula, we can calculate the lengths of the diagonals AC and BD.
The distance formula is given by: d = sqrt((x2 - x1)^2 + (y2 - y1)^2)
Let's calculate the lengths of the diagonals:
For diagonal AC: AC = sqrt((x2 - x1)^2 + (y2 - y1)^2) = sqrt((2 - (-1))^2 + (-2 - 1)^2) = sqrt((3)^2 + (-3)^2) = sqrt(9 + 9) = sqrt(18)
For diagonal BD: BD = sqrt((x2 - x1)^2 + (y2 - y1)^2) = sqrt((-2 - 3)^2 + (-1 - 3)^2) = sqrt((-5)^2 + (-4)^2) = sqrt(25 + 16) = sqrt(41)
Now that we have the lengths of the diagonals AC and BD, we can proceed to find the sine of the angle between them.
Finding the Sine of the Angle between the Diagonals
To find the sine of the angle between the diagonals, we can use the formula:
sin(theta) = (2 * Area of Quadrilateral ABCD) / (AC * BD)
The area of a quadrilateral can be calculated using the Shoelace formula or by dividing it into two triangles and finding their areas. Since we already have the coordinates of the vertices, we can use the Shoelace formula.
The Shoelace formula is given by: Area = 0.5 * |(x1 * y2 + x2 * y3 + x3 * y1) - (y1 * x2 + y2 * x3 + y3 * x1)|
Let's calculate the area of quadrilateral ABCD:
Area = 0.5 * |(-1 * 3 + 3 * (-2) + 2 * 1) - (1 * 3 + 3 * 2 + (-2) * (-1))| = 0.5 * |(-3 - 6 + 2) - (3 + 6 + 2)| = 0.5 * |-7 - 11| = 0.5 * |-18| = 9
Now, we can calculate the sine of the angle between the diagonals:
sin(theta) = (2 * Area of Quadrilateral ABCD) / (AC * BD) = (2 * 9) / (sqrt(18) * sqrt(41)) = 18 / (sqrt(18) * sqrt(41)) = 18 / (sqrt(18 * 41)) = 18 / (sqrt(738)) ≈ 0.613
Therefore, the sine of the angle between the diagonals of quadrilateral ABCD is approximately 0.613.
Note: The search result snippet provided does not seem to be relevant to the question. Please let me know if you need any further assistance.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili