Вопрос задан 16.06.2023 в 11:51. Предмет Алгебра. Спрашивает Фейгина Лена.

Представьте выражение (x⁴+2)²– 14(x⁴+2)+49 в виде произведения (7 класс)​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Торопов Алексей.

Ответ:

Объяснение:

(x⁴+2)²– 14(x⁴+2)+49 к этому выражению можно применить формулу

квадрат разности а²-2ав+в²=(а-в)²

(x⁴+2)²– 14(x⁴+2)+49=(х⁴+2 - 7)²=(х⁴ - 5)²

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Представление выражения в виде произведения

Для представления выражения (x⁴+2)²– 14(x⁴+2) + 49 в виде произведения, мы можем использовать метод подстановки. Давайте рассмотрим каждую часть выражения по отдельности.

1. Рассмотрим первую часть выражения: (x⁴+2)². Чтобы представить это в виде произведения, мы можем использовать формулу квадрата суммы двух слагаемых: (a+b)² = a² + 2ab + b². В данном случае, a = x⁴ и b = 2. Применяя формулу, получаем:

(x⁴+2)² = (x⁴)² + 2(x⁴)(2) + (2)² = x⁸ + 4x⁴ + 4

2. Рассмотрим вторую часть выражения: 14(x⁴+2). Мы можем применить дистрибутивное свойство умножения, чтобы раскрыть скобки:

14(x⁴+2) = 14x⁴ + 28

3. Теперь рассмотрим третью часть выражения: 49.

Теперь, объединим все три части выражения:

(x⁴+2)² – 14(x⁴+2) + 49 = (x⁸ + 4x⁴ + 4) – (14x⁴ + 28) + 49

Упростим это выражение:

x⁸ + 4x⁴ + 4 - 14x⁴ - 28 + 49 = x⁸ - 10x⁴ + 25

Таким образом, выражение (x⁴+2)²– 14(x⁴+2) + 49 можно представить в виде произведения следующим образом: (x⁴ - 5)².

Произведение в 7 классе

В 7 классе, произведение обычно изучается в контексте умножения чисел и алгебры. Ученики изучают различные методы умножения, такие как умножение в столбик, умножение двузначных чисел и умножение с использованием формул.

Например, ученики могут изучать умножение двузначных чисел, таких как 12 и 34. Они могут использовать метод умножения в столбик, где каждая цифра числа 12 умножается на каждую цифру числа 34, а затем полученные произведения складываются.

Также в 7 классе ученики могут изучать умножение алгебраических выражений, подобных тому, которое мы рассмотрели выше. Они могут использовать различные методы, такие как дистрибутивное свойство умножения, чтобы раскрыть скобки и упростить выражения.

В общем, произведение в 7 классе является важным понятием в математике и используется для решения различных задач и проблем.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос