
Представить в виде многочлена (раскрыть скобки) 1). (x - 2)(x + 2) 2). (3x + y)(3x - y) 3). (a² -
3)(a² + 3) 4). (5 - y)² 5). (x + 7)2 + (x + 2)(x - 2) 6). (a + 1)(a - 1) – (a + 4)2 7). (x - 5)2 - (x - 7)(x + 7) 8). (c-y)(c + y) (c² + y²)

Ответы на вопрос

Ответ:
1). x2+2x-2x-4=x2-4 2).9x2-3xy+3xy-y2=9x2-y2 3). a4 +3a2-3a2-9=a4-9 4). 25-10y+y2 5). 2x+14+x2-2x+2x-4=4x+10
то что x2 и т.д это x в квадрате



1) (x - 2)(x + 2)
To expand this expression, we can use the FOIL method, which stands for First, Outer, Inner, Last.
First, we multiply the first terms of each binomial: x * x = x^2
Outer, we multiply the outer terms of each binomial: x * 2 = 2x
Inner, we multiply the inner terms of each binomial: -2 * x = -2x
Last, we multiply the last terms of each binomial: -2 * 2 = -4
Now, we can combine the like terms: x^2 + 2x - 2x - 4
The middle terms, 2x and -2x, cancel each other out, so we are left with: x^2 - 4
Therefore, the expanded form of (x - 2)(x + 2) is x^2 - 4.
2) (3x + y)(3x - y)
To expand this expression, we can once again use the FOIL method:
First, we multiply the first terms of each binomial: 3x * 3x = 9x^2
Outer, we multiply the outer terms of each binomial: 3x * -y = -3xy
Inner, we multiply the inner terms of each binomial: y * 3x = 3xy
Last, we multiply the last terms of each binomial: y * -y = -y^2
Now, we can combine the like terms: 9x^2 - 3xy + 3xy - y^2
The middle terms, -3xy and 3xy, cancel each other out, so we are left with: 9x^2 - y^2
Therefore, the expanded form of (3x + y)(3x - y) is 9x^2 - y^2.
3) (a² - 3)(a² + 3)
To expand this expression, we can once again use the FOIL method:
First, we multiply the first terms of each binomial: a² * a² = a^4
Outer, we multiply the outer terms of each binomial: a² * 3 = 3a²
Inner, we multiply the inner terms of each binomial: -3 * a² = -3a²
Last, we multiply the last terms of each binomial: -3 * 3 = -9
Now, we can combine the like terms: a^4 + 3a² - 3a² - 9
The middle terms, 3a² and -3a², cancel each other out, so we are left with: a^4 - 9
Therefore, the expanded form of (a² - 3)(a² + 3) is a^4 - 9.
4) (5 - y)²
To expand this expression, we can again use the FOIL method:
First, we multiply the first terms of each binomial: 5 * 5 = 25
Outer, we multiply the outer terms of each binomial: 5 * -y = -5y
Inner, we multiply the inner terms of each binomial: -y * 5 = -5y
Last, we multiply the last terms of each binomial: -y * -y = y²
Now, we can combine the like terms: 25 - 5y - 5y + y²
The middle terms, -5y and -5y, combine to give us -10y, so we are left with: 25 - 10y + y²
Therefore, the expanded form of (5 - y)² is 25 - 10y + y².
5) (x + 7)² + (x + 2)(x - 2)
To expand this expression, we can first expand the square term using the FOIL method:
(x + 7)² = (x + 7)(x + 7)
First, we multiply the first terms of each binomial: x * x = x²
Outer, we multiply the outer terms of each binomial: x * 7 = 7x
Inner, we multiply the inner terms of each binomial: 7 * x = 7x
Last, we multiply the last terms of each binomial: 7 * 7 = 49
Now, we can combine the like terms: x² + 7x + 7x + 49
The middle terms, 7x and 7x, combine to give us 14x, so we are left with: x² + 14x + 49
Next, we expand the second term (x + 2)(x - 2) using the FOIL method:
First, we multiply the first terms of each binomial: x * x = x²
Outer, we multiply the outer terms of each binomial: x * -2 = -2x
Inner, we multiply the inner terms of each binomial: 2 * x = 2x
Last, we multiply the last terms of each binomial: 2 * -2 = -4
Now, we can combine the like terms: x² - 2x + 2x - 4
The middle terms, -2x and 2x, cancel each other out, so we are left with: x² - 4
Finally, we add the two expanded terms together: (x + 7)² + (x + 2)(x - 2) = x² + 14x + 49 + x² - 4
Combining like terms, we get: 2x² + 14x + 45
Therefore, the expanded form of (x + 7)² + (x + 2)(x - 2) is 2x² + 14x + 45.
6) (a + 1)(a - 1) - (a + 4)²
To expand this expression, we can first expand the first term (a + 1)(a - 1) using the FOIL method:
First, we multiply the first terms of each binomial: a * a = a²
Outer, we multiply the outer terms of each binomial: a * -1 = -a
Inner, we multiply the inner terms of each binomial: 1 * a = a
Last, we multiply the last terms of each binomial: 1 * -1 = -1
Now, we can combine the like terms: a² - a + a - 1
The middle terms, -a and a, cancel each other out, so we are left with: a² - 1
Next, we expand the second term (a + 4)²:
(a + 4)² = (a + 4)(a + 4)
Using the FOIL method, we multiply the binomials:
First, we multiply the first terms of each binomial: a * a = a²
Outer, we multiply the outer terms of each binomial: a * 4 = 4a
Inner, we multiply the inner terms of each binomial: 4 * a = 4a
Last, we multiply the last terms of each binomial: 4 * 4 = 16
Now, we can combine the like terms: a² + 4a + 4a + 16
The middle terms, 4a and 4a, combine to give us 8a, so we are left with: a² + 8a + 16
Finally, we subtract the expanded second term from the expanded first term: (a + 1)(a - 1) - (a + 4)² = (a² - 1) - (a² + 8a + 16)
Distributing the negative sign to each term in the second parentheses, we get: a² - 1 - a² - 8a - 16
Combining like terms, we have: -8a - 17
Therefore, the expanded form of (a + 1)(a - 1) - (a + 4)² is -8a - 17.
7) (x - 5)² - (x - 7)(x + 7)
To expand this expression, we can first expand the square term using the FOIL method:
(x - 5)² = (x - 5)(x - 5)
First, we multiply the first terms of each binomial: x * x = x²
Outer, we multiply the outer terms of each binomial: x * -5 = -5x
Inner, we multiply the inner terms of each binomial: -5 * x = -5x
Last, we multiply the last terms of each binomial: -5 * -5 = 25
Now, we can combine the like terms: x² - 5x - 5x + 25
The middle terms, -5x and -5x, combine to give us -10x, so we are left with: x² - 10x + 25
Next, we expand the second term (x - 7)(x + 7) using the FOIL method:
First, we multiply the first terms of each binomial: x * x = x²
Outer, we multiply the outer terms of each binomial: x * 7 = 7x
Inner, we multiply the inner terms of each binomial: -7 * x = -7x
Last, we multiply the last terms of each binomial:


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili