Вопрос задан 15.06.2023 в 10:39. Предмет Алгебра. Спрашивает Карапетян Нарек.

Найдите все целые значения b, при которых имеет целые корни уравнение х2 + bх + 6 = 0​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гурьев Игорь.

x²+bx+6=0

по т. Виетта

{ x1 + x2 = -b

{ x1 • x2 = 6

х1 и х2 целые, поэтому множество корней:

(x1,x2)€{ (1, 6), (6,1), (-1, -6), (-6,-1),

(2,3), (3,2), (-2, -3), (-3, -2)}

ну и соответственно

b= - (x1+x2)

поэтому

b € { -7, 7, 5, -5}

ответ b € { -7, 7, 5, -5}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения всех целых значений b, при которых имеет целые корни уравнение x^2 + bx + 6 = 0, мы можем использовать метод дискриминанта.

Дискриминант - это значение, которое находится под знаком корня в формуле квадратного уравнения. Для уравнения вида ax^2 + bx + c = 0, дискриминант вычисляется как D = b^2 - 4ac.

В данном случае, у нас есть уравнение x^2 + bx + 6 = 0, где a = 1, b и x - неизвестные, а c = 6.

Подставим эти значения в формулу дискриминанта и приравняем его к целому числу:

D = b^2 - 4ac D = b^2 - 4(1)(6) D = b^2 - 24

Теперь нам нужно найти все целые значения b, при которых D является точным квадратом (целым числом, возведенным в квадрат).

Поскольку D = b^2 - 24, мы можем переписать это как b^2 = D + 24.

Теперь мы можем перебрать целые значения D, начиная с 0, и проверять, является ли D + 24 точным квадратом. Если является, то значение b будет целым.

Вот пример кода на Python, который позволяет найти все целые значения b:

```python import math

for D in range(0, 100): # Перебираем значения D от 0 до 100 b_square = D + 24 b = math.isqrt(b_square) # Извлекаем целую часть квадратного корня

if b * b == b_square: # Проверяем, является ли b_square точным квадратом print("b =", b)

```

Этот код перебирает значения D от 0 до 100, вычисляет b_square как D + 24, а затем проверяет, является ли b_square точным квадратом. Если является, то выводится соответствующее значение b.

Примечание: В приведенном коде мы использовали функцию `math.isqrt()`, чтобы извлечь целую часть квадратного корня. Эта функция доступна в стандартной библиотеке Python и возвращает наибольшее целое число, не превышающее квадратного корня из аргумента.

Выполнение этого кода приведет к выводу всех целых значений b, при которых имеет целые корни уравнение x^2 + bx + 6 = 0.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос