Вопрос задан 14.06.2023 в 13:09. Предмет Алгебра. Спрашивает Смирнова Алёна.

5x^2 - 37x + 14 / 22x - 2x^2 - 56 ПОМОГИТЕ ..

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Оверин Слава.

Решение во вложении:



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я могу помочь. Вам нужно разделить выражение (5x^2 - 37x + 14) на (22x - 2x^2 - 56). Давайте выполним деление.

Первым шагом в делении является упорядочение коэффициентов по убыванию степеней переменной:

  • Упорядочим коэффициенты делителя: -2x^2 + 22x - 56.
  • Упорядочим коэффициенты делимого: 5x^2 - 37x + 14.

Теперь начнем деление, следуя процессу деления полиномов, подобно делению чисел:

scss
(5/(-2))x^2 + (-37/(-2))x + (14/(-2)) ____________________________________

-2x^2 + 22x - 56 | 5x^2 - 37x + 14

После выполнения деления, получаем:

scss
(-5/2)x + (81/4) _____________________________

-2x^2 + 22x - 56 | 5x^2 - 37x + 14

Таким образом, результат деления выражения (5x^2 - 37x + 14) на (22x - 2x^2 - 56) равен:

-5/2x + 81/4

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос