Вопрос задан 11.06.2023 в 08:09. Предмет Алгебра. Спрашивает Нурбергенов Азамат.

Самостійна робота 1.Винесіть за дужки спільний множник 8х+12у. А) 8(х+4у). Б) 4(2х+3у). В)

12(-4х+у). Г) Винести неможливо. 2.Розкладіть на множники многочлен а(2х-5у)+2х-5у. А) (2х-5у)(а+1). Б) а (2х-5у). В) (2х-5у)(а-1). Г) Винести неможливо. 3.Розкладіть на множники: а)40х2у3 – 25ху2 + 30ху3, б) a(p-q) + b(q-p), в) ax-2a+3x-6. Розв′яжіть рівняння: 3у+12 –(у+4)2 =0.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фазрахманова Карина.

Ответ:

1. А) 8(х+4у)

2. А) (2х-5у)(а+1)

3.

а) 40х2у3 - 25х2 + 30х3 = 5х2 (8у3 - 5 + 6х)

б) a(p-q) + b(q-p) = (p-q) (a+b)

в) ах-2а+3х-6 = (а-3) (х-2)

Рівняння:

3у+12 –(у+4)2 = 0

3у + 12 - (у + 4)2 = 3у + 12 - (у2 + 8у + 16) = 3у + 12 - у2 - 8у - 16 =

3у + 12 - у2 - 8у - 16 = -у2 + -5у + -4 =

-у2 + -5у + -4 = 0

Ми можемо використовувати квадратну формулу для вирішення цього рівняння

y = (-5 +/- sqrt(5^2 - 4*(-4)))/(2*(-1))

y = (-5 +/- sqrt(25 + 16))/(-2)

y = (-5 +/- sqrt(41))/(-2)

y = (-5 + sqrt(41))/(-2) = 3 - sqrt(41)

y = (-5 - sqrt(41))/(-2) = 3 + sqrt(41)

Отже, розв'язки рівняння такі: y = 3 - sqrt(41) и y = 3 + sqrt(41)

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
  1. Відповідь: А) 8(х+4у).

Для винесення спільного множника з многочлена 8х+12у, ми шукаємо найбільший спільний дільник (НСД) коефіцієнтів 8 і 12, який є 4. Тому ми можемо винести 4:

8х + 12у = 4(2х + 3у).

  1. Відповідь: Г) Винести неможливо.

Ми не можемо винести спільний множник з многочлена а(2х-5у) + 2х - 5у, оскільки немає спільного множника, який був би присутній у всіх доданках.

  1. а) Розкладаємо на множники многочлен 40х^2у^3 - 25ху^2 + 30ху^3:

40х^2у^3 - 25ху^2 + 30ху^3 = 5х(8ху^3 - 5у^2 + 6у^3).

б) Розкладаємо на множники многочлен a(p-q) + b(q-p):

a(p-q) + b(q-p) = (a-b)(p-q).

в) Розкладаємо на множники многочлен ax - 2a + 3x - 6:

ax - 2a + 3x - 6 = a(x-2) + 3(x-2) = (a+3)(x-2).

  1. Розв'язуємо рівняння: 3у + 12 - (у + 4)^2 = 0.

Спочатку виконаємо операцію в квадратній дужці:

(у + 4)^2 = у^2 + 8у + 16.

Підставимо це значення у в початкове рівняння:

3у + 12 - (у^2 + 8у + 16) = 0.

Розподілимо множники:

3у + 12 - у^2 - 8у - 16 = 0.

Згрупуємо подібні члени:

-у^2 - 5у - 4 = 0.

Перенесемо все на одну сторону:

у^2 + 5у + 4 = 0.

Розв'яжемо це квадратне рівняння факторизацією:

(у + 1)(у + 4) = 0.

Отримуємо два можливих розв'язки:

у + 1 = 0 --> у = -1, або у + 4 = 0

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос