Вопрос задан 05.06.2023 в 14:41. Предмет Алгебра. Спрашивает Рыжков Коля.

Решить неравенство -x^2-2x меньше или равно 0 .

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Белкин Руся.
-x^2-2x \leq 0\\\\-x(x+2) \leq 0\\\\x(x+2) \geq 0\\\\+++[-2\, ]---[\, 0\, ]+++\\\\x\in (-\infty ,-2\, ]\cup [\, 0,+\infty )
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного неравенства, мы должны найти значения x, которые удовлетворяют неравенству -x^2 - 2x ≤ 0.

Давайте решим его пошагово:

  1. Сначала приведем неравенство к стандартному виду с положительным коэффициентом перед x^2. Умножим неравенство на -1, чтобы изменить знак неравенства и получим x^2 + 2x ≥ 0.

  2. Разложим левую часть на множители: x(x + 2) ≥ 0.

  3. Теперь мы должны определить интервалы, на которых данное неравенство выполняется. Для этого проанализируем знак выражения x(x + 2).

    • Если x > 0, то оба множителя x и (x + 2) положительны. Значит, произведение будет положительным.
    • Если x = 0, то первый множитель равен нулю, но второй множитель (x + 2) положителен. Произведение будет равно нулю.
    • Если -2 < x < 0, то первый множитель (x) отрицателен, но второй множитель (x + 2) положителен. Произведение будет отрицательным.
    • Если x = -2, то оба множителя равны нулю, и произведение снова будет равно нулю.
    • Если x < -2, то оба множителя отрицательны, и произведение будет положительным.
  4. Итак, мы нашли интервалы значений x, где неравенство выполняется: x ∈ (-∞, -2] ∪ [0, +∞).

Таким образом, решением данного неравенства является множество всех значений x, принадлежащих интервалам (-∞, -2] и [0, +∞).

1 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос