
X+y+z=1 x2+y2+z2=4 x3+y3+z3=6 x4+y4+z4=?


Ответы на вопрос

x + y + z = 1 (1)
x^2 + y^2 + z^2 = 4 (2)
x^3 + y^3 + z^3 = 6 (3)
x^4 + y^4 + z^4 = ?
не совсем все просто
надо очень хорошо знать квадраты и кубы многочленов
Итак
(x + y)^2 = x^2 + 2xy + y^2
(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3
(x + y + z)^2 = (x + y)^2 + 2(x + y)z + z^2 = x^2 + y^2 + z^2 + 2(xy + yz + xz) (4) аналогично и квадраты
(x^2 + y^2 + z^2)^2 = (x^2 + y^2)^2 + 2(x^2 + y^2)z^2 + z^4 = x^4 + y^4 + z^4 + 2(x^2y^2 + y^2z^2 + x^2z^2) (5)
рассмотрим 4
x^2 + y^2 + z^2 + 2(xy + yz + xz) = 1
2(xy + yz + xz) = 1 - 4
xy + yz + xz = - 3/2
(x + y + z)^3 = (x + y)^3 + 3(x + y)^2z + 3(x + y)z^2 + z^3 = x^3 + 3x^2y + 3xy^2 + y^3 + 3x^2z + 6xyz + 3y^2z + 3xz^2 + 3yz^2 + z^3
6xyz = (x + y + z)^3 - 3(x + y + z)(x^2 + y^2 + z^2) + 2(x^3 + y^3+z^3)
6xyz = 1 - 3*1*4 + 2*6 = 1 - 12 + 12 = 1
xyz = 1/6
и наконец
(x^2 + y^2 + z^2)^2 = (x^2 + y^2)^2 + 2(x^2 + y^2)z^2 + z^4 = x^4 + y^4 + z^4 + 2(x^2y^2 + y^2z^2 + x^2z^2) (5)
x^4 + y^4 + z^4 = (x^2 + y^2 + z^2)^2 - 2(x^2y^2 + y^2z^2 + x^2z^2) = (x^2 + y^2 + z^2)^2 - 2((xy + yz + xz)^2 - 2xyz(x+ y + z))
получили окончательную формулу
x^4 + y^4 + z^4 = (x^2 + y^2 + z^2)^2 - 2((xy + yz + xz)^2 - 2xyz(x+ y + z))
x^4 + y^4 + z^4 = 4^2 - 2((-3/2)^2 - 2*1/6*1) = 16 - 2(9/4 - 1/3) = 16 - 2(27 - 4)/12 = 16 - 23/6 = 16 - 3 5/6 = 12 1/6 = 73/6
ответ 73/6
проверьте - вроде правильно



To find the value of x^4 + y^4 + z^4, we can use the following approach:
First, let's solve the given system of equations:
Equation 1: x + y + z = 1 Equation 2: x^2 + y^2 + z^2 = 4 Equation 3: x^3 + y^3 + z^3 = 6
Now, let's square Equation 1 and simplify it:
(x + y + z)^2 = 1^2 x^2 + y^2 + z^2 + 2(xy + xz + yz) = 1
Using Equation 2, we can substitute the value of x^2 + y^2 + z^2:
4 + 2(xy + xz + yz) = 1 2(xy + xz + yz) = 1 - 4 2(xy + xz + yz) = -3 xy + xz + yz = -3/2
Next, let's cube Equation 1 and simplify it:
(x + y + z)^3 = 1^3 x^3 + y^3 + z^3 + 3(x^2y + xy^2 + x^2z + xz^2 + y^2z + yz^2) + 6xyz = 1
Using Equations 2 and 3, we can substitute the values:
6 + 3(x^2y + xy^2 + x^2z + xz^2 + y^2z + yz^2) + 6xyz = 1 3(x^2y + xy^2 + x^2z + xz^2 + y^2z + yz^2) + 6xyz = 1 - 6 3(x^2y + xy^2 + x^2z + xz^2 + y^2z + yz^2) + 6xyz = -5
Using the values of xy + xz + yz from earlier, we can substitute:
3(x^2y + xy^2 + x^2z + xz^2 + y^2z + yz^2) + 6xyz = -5 3(x^2y + xy^2 - (3/2)(x + y + z)z) + 6xyz = -5 3(x^2y + xy^2 - (3/2)(1)z) + 6xyz = -5 3(x^2y + xy^2 - (3/2)z) + 6xyz = -5 3(x^2y + xy^2 - (3/2)z) + 6xyz = -5
We now have a system of equations that can be solved for the values of x, y, and z.
From here, we can calculate x^4 + y^4 + z^4 using the values of x, y, and z obtained from the system of equations. However, since the calculations involve higher powers, they may not result in simple integer values. To find the exact value of x^4 + y^4 + z^4, you would need to solve the system of equations and perform the necessary calculations.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili