
1) x÷(3+x) + 4x+6÷(x^2+4x+3)=0 2) a) 2x+1/(x-3) ≤ 1 b) (x-2)(x+5)÷(x-1)^2


Ответы на вопрос

x^3 - 3x^2 - 4x = 0,
x(x^2-3x-4)=0,
x1=0,
x^2-3x-4=0,
x2=-1, x3=4;
(2x - 1)^4 - x^2 = 0,
((2x-1)^2)^2-x^2=0,
((2x-1)^2-x)((2x-1)^2+x)=0,
(2x-1)^2-x=0,
4x^2-5x+1=0,
D=9,
x1=1/4, x2=1;
(2x-1)^2+x=0,
4x^2-3x+1=0,
D=-7<0; нет решений
x^3 - 3x^2 - x +3 = 0,
x^2(x-3)-(x-3)=0,
(x-3)(x^2-1)=0,
x-3=0, x1=3;
x^2-1=0, x^2=1, x2=-1, x3=1



- To solve the equation x÷(3+x) + 4x+6÷(x^2+4x+3) = 0, we can follow these steps:
First, let's simplify the equation by finding common denominators:
x÷(3+x) + 4x+6÷(x^2+4x+3) = 0
Multiply the first fraction by (x^2+4x+3) and the second fraction by (3+x):
x(x^2+4x+3) + (4x+6)(3+x) = 0
Now, expand and simplify:
x^3 + 4x^2 + 3x + 12x + 6x + 18 = 0
Combine like terms:
x^3 + 4x^2 + 21x + 18 = 0
Next, let's factor the equation:
(x + 2)(x + 3)(x + 3) = 0
Now, we have three possible solutions:
x + 2 = 0 -> x = -2 x + 3 = 0 -> x = -3 x + 3 = 0 -> x = -3
Therefore, the solutions to the equation are x = -2 and x = -3.
- a) To solve the inequality 2x + 1/(x - 3) ≤ 1, we can follow these steps:
Multiply the entire inequality by (x - 3) to remove the denominator:
2x(x - 3) + 1 ≤ (x - 3)
Expand and simplify:
2x^2 - 6x + 1 ≤ x - 3
Rearrange the inequality to have all terms on one side:
2x^2 - 6x - x + 1 + 3 ≤ 0
2x^2 - 7x + 4 ≤ 0
Now, we need to find the values of x that satisfy this inequality. To do that, we can factor the quadratic equation:
(2x - 1)(x - 4) ≤ 0
Now, we have two critical points: x = 1/2 and x = 4. We can use these points to create intervals and determine the sign of the expression within each interval.
Testing the interval x < 1/2:
Choose a value in the interval, let's say x = 0:
(2(0) - 1)(0 - 4) ≤ 0 (-1)(-4) ≤ 0 4 ≤ 0
This is false.
Testing the interval 1/2 ≤ x < 4:
Choose a value in the interval, let's say x = 2:
(2(2) - 1)(2 - 4) ≤ 0 (3)(-2) ≤ 0 -6 ≤ 0
This is true.
Testing the interval x ≥ 4:
Choose a value in the interval, let's say x = 5:
(2(5) - 1)(5 - 4) ≤ 0 (9)(1) ≤ 0 9 ≤ 0
This is false.
Therefore, the solution to the inequality 2x + 1/(x - 3) ≤ 1 is 1/2 ≤ x < 4.
b) To simplify the expression (x - 2)(x + 5) ÷ (x - 1)^2, we can follow these steps:
Start by factoring the numerator:
(x - 2)(x +


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili