
1/y +2 +1/y + 2-2y=8/y3-4y


Ответы на вопрос

1/y +2 +1/y + 2-2y=8/y3-4y
1/y+2+1/y+2+(-2)y = - (2*(y2-2y-1))/2
(8/y3)-4y=(4*(y4-2))/y3
-(2*(y2-2y-1))/2 = (4*(y4-2))/y3
-2y+(2/y)+4 = (8/y3)-4y
2y+(2/y)-(8/y3)+4=0
(2(y4+2y3+y2-4))/y=0
1/y3=0
y4+2y3+y2-4=0
y2+y+2=0
d=b2-4ac=1^2-4*(1*2)=-7
d<0
y=-2, y=1



To solve the given equation:
1/y + 2 + 1/(y + 2 - 2y) = 8/(y^3 - 4y)
First, simplify the equation by combining like terms and simplifying fractions:
1/y + 2 + 1/(2 - y) = 8/(y^3 - 4y)
Now, find a common denominator for the fractions:
[(2 - y) + 2y + y(y + 2 - 2y)] / [y(2 - y)(y + 2 - 2y)] = 8/(y^3 - 4y)
Simplify further:
[(2 - y) + 2y + y(y + 2 - 2y)] / [y(2 - y)(y + 2 - 2y)] = 8/(y^3 - 4y)
[(2 - y) + 2y + y^2 + 2y - 2y^2] / [y(2 - y)(y + 2 - 2y)] = 8/(y^3 - 4y)
Combine like terms:
(2 - y + 2y + y^2 + 2y - 2y^2) / [y(2 - y)(y + 2 - 2y)] = 8/(y^3 - 4y)
(-y^2 + 5y + 2) / [y(2 - y)(y + 2 - 2y)] = 8/(y^3 - 4y)
Multiply both sides of the equation by the common denominator to eliminate the denominators:
(-y^2 + 5y + 2)(y^3 - 4y) = 8y(2 - y)(y + 2 - 2y)
Expand and simplify:
-y^5 + 4y^4 + 5y^3 - 20y^2 + 2y^3 - 8y^2 + 10y - 40y + 16 = 16y(2 - y)(y + 2 - 2y)
Combine like terms:
-y^5 + 4y^4 + 7y^3 - 28y^2 - 30y + 16 = 16y(2 - y)(y + 2 - 2y)
Rearrange the equation to set it equal to zero:
-y^5 + 4y^4 + 7y^3 - 28y^2 - 30y + 16 - 16y(2 - y)(y + 2 - 2y) = 0
At this point, it becomes a fifth-degree polynomial equation. Finding exact solutions for general fifth-degree polynomials can be challenging and typically requires numerical methods or approximation techniques.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili