Вопрос задан 10.03.2021 в 18:41. Предмет Алгебра. Спрашивает Шавадзе Валерия.

Помогите плииииз 3/cos^2x=8tgx-2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куц Анна-Мария.
Использована формула взаимозависимости косинуса и тангенса
0 0
Отвечает Радюкина Полина.
Cos в степени 2 или 2х?

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим данное уравнение.

3/cos^2(x) = 8tan(x) - 2

Первым шагом упростим выражение, заменив тангенс на синус и косинус:

3/cos^2(x) = 8sin(x)/cos(x) - 2

Перепишем дробь 8sin(x)/cos(x) в виде (8sin(x))/cos(x):

3/cos^2(x) = (8sin(x))/cos(x) - 2

Сократим дроби:

3 = 8sin(x) - 2cos^2(x)

Теперь заменим синус и косинус на известные соотношения:

3 = 8sin(x) - 2(1 - sin^2(x))

Раскроем скобки:

3 = 8sin(x) - 2 + 2sin^2(x)

Упростим выражение:

2sin^2(x) + 8sin(x) - 5 = 0

Теперь это квадратное уравнение относительно sin(x). Решим его с помощью квадратного корня:

sin(x) = (-b ± √(b^2 - 4ac))/(2a)

Где a = 2, b = 8 и c = -5.

Подставим значения и вычислим sin(x):

sin(x) = (-8 ± √(8^2 - 4 * 2 * -5))/(2 * 2)

sin(x) = (-8 ± √(64 + 40))/4

sin(x) = (-8 ± √104)/4

sin(x) = (-8 ± 2√26)/4

sin(x) = -2 ± (1/2)√26

Теперь найдем значение cos(x) с использованием тригонометрического тождества:

cos^2(x) + sin^2(x) = 1

cos^2(x) = 1 - sin^2(x)

cos^2(x) = 1 - (-2 ± (1/2)√26)^2

cos^2(x) = 1 - (4 ± 2√26 + 1/4 * 26)

cos^2(x) = 1 - (4 ± 2√26 + 13/4)

cos^2(x) = 1 - (4 ± 8√26 + 13)/4

cos^2(x) = (4 ± 8√26 - 9)/4

cos^2(x) = (5 ± 8√26)/4

cos(x) = ±√((5 ± 8√26)/4)

cos(x) = ±(1/2)√(5 ± 8√26)

Таким образом, у нас получилось два решения для sin(x) и два решения для cos(x). Чтобы найти значения угла x, вам понадобятся таблицы синусов и косинусов, чтобы найти соответствующие значения для полученных выражений.

Пожалуйста, обратите

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос