Вопрос задан 28.07.2023 в 20:58. Предмет Физика. Спрашивает Меликов Артур.

Точка движется по окружности с периодом Т=4 с и линейной скоростью V=3 м/c. При повороте

радиуса-вектора точки на угол a= 60° путь, пройденный точкой больше модуля ее перемещения на …см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузьмин Артем.

T=4 c v=3 м/с α=60° Δs=?

===

Путь составляет 1/6 длины окружности s=2*π*R/6

Перемещение равно радиусу окружности r=R

v=2*π*R/T -----> R=v*T/(2*π)

Δs=s-r=v*T/6 - v*T/(2*π)=3*4/6 - 3*4/(2*3.14)=0.089 м (≈9 см)

==============================================

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, давайте разберемся сначала с тем, какую длину пути проходит точка при повороте на угол a = 60° по окружности.

Период Т = 4 секунды означает, что точка делает полный оборот по окружности за 4 секунды.

Линейная скорость V = 3 м/сек означает, что за одну секунду точка проходит по окружности расстояние V = 3 метра.

Теперь рассмотрим, какую длину пути S1 проходит точка за время Т = 4 секунды. Мы можем использовать формулу пути для равномерного прямолинейного движения:

S1 = V * T = 3 м/сек * 4 сек = 12 метров.

Теперь, когда у нас есть значение S1, давайте рассмотрим, какую длину пути проходит точка при повороте на угол a = 60°.

Длина окружности C = 2 * π * R, где R - радиус окружности.

Поскольку точка делает полный оборот за период Т, угол поворота за время Т будет равен 360°.

Теперь рассмотрим, какую длину дуги S2 проходит точка при повороте на угол a = 60°:

S2 = (a/360) * C = (60°/360°) * 2 * π * R = (1/6) * 2 * π * R = π/3 * R.

Теперь нам нужно сравнить длины путей S1 и S2:

S1 = 12 метров. S2 = π/3 * R.

Мы хотим найти разницу между S1 и модулем S2, то есть |S1 - S2|:

|S1 - S2| = |12 м - (π/3) * R|.

Очевидно, что длина пути S1 будет больше модуля S2, если:

12 м - (π/3) * R > 0.

Теперь нам нужно решить неравенство:

12 м - (π/3) * R > 0.

Перенесем (π/3) * R на другую сторону:

12 м > (π/3) * R.

Теперь, чтобы найти значение R, делим обе стороны на π/3:

R < (12 м) / (π/3) = 4 метра.

Таким образом, если радиус окружности R меньше 4 метров, то путь, пройденный точкой при повороте на угол a = 60°, будет меньше модуля её перемещения на 12 метров.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос