Вопрос задан 21.06.2023 в 16:10. Предмет Физика. Спрашивает Kitina Tasha.

На зонную пластинку падает плоская монохроматическая волна (2 % 0,5 мкм). Определить радиус первой

зоны Френеля, если расстояние от зонной пластинки до места наблюдения 1 м.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бондар Лера.

Ответ:

Объяснение:

Дано:

λ = 0,5 мкм = 0,5·10⁻⁶ м

b = 1 м

k = 1

________

rk - ?

rk = √ (k·b·λ)

r₁ = √ (1·1·0,5·10⁻⁶) ≈ 707·10⁻⁶ м     или    707 мкм

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения радиуса первой зоны Френеля можно воспользоваться следующей формулой:

r1=λL2,r_1 = \sqrt{\frac{\lambda \cdot L}{2}},

где:

  • r1r_1 - радиус первой зоны Френеля,
  • λ\lambda - длина волны света,
  • LL - расстояние от зонной пластинки до места наблюдения.

Из условия задачи известно, что длина волны λ\lambda равна 0,5 мкм, что равно 0,5 * 10^(-6) м.

Также известно, что расстояние LL равно 1 метру.

Подставив эти значения в формулу, мы можем вычислить радиус первой зоны Френеля:

r1=0,510612=0,25106=0,5103=0,0005м.r_1 = \sqrt{\frac{0,5 \cdot 10^{-6} \cdot 1}{2}} = \sqrt{0,25 \cdot 10^{-6}} = 0,5 \cdot 10^{-3} = 0,0005 \, \text{м}.

Таким образом, радиус первой зоны Френеля составляет 0,0005 метра или 0,5 мм.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос