Вопрос задан 17.06.2023 в 11:52. Предмет Физика. Спрашивает Базарбаева Динара.

Камень, брошенный с поверхности земли под углом `alpha=30^@` к горизонту, дважды побывал на одной и

той же высоте `h` спустя время `t_1=3` c и `t_2=5` c после начала движения. Найдите начальную скорость камня `v_0`.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Утеулин Асет.

Ответ:

.................................

Объяснение:

ответ:80 м/с


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем использовать два уравнения равноускоренного движения по вертикали:

  1. h = v_0 * t_1 * sin(alpha) - (1/2) * g * t_1^2

  2. h = v_0 * t_2 * sin(alpha) - (1/2) * g * t_2^2

где:

  • h - высота, на которой камень находится в обоих случаях,
  • v_0 - начальная скорость камня,
  • alpha - угол броска камня к горизонту (в радианах),
  • t_1 и t_2 - времена, прошедшие после начала движения камня,
  • g - ускорение свободного падения (примерно 9.8 м/с^2).

Для решения системы уравнений мы можем выразить v_0 из первого уравнения и подставить его во второе уравнение:

v_0 = (h + (1/2) * g * t_1^2) / (t_1 * sin(alpha))

Подставляя это выражение для v_0 во второе уравнение, получаем:

(h + (1/2) * g * t_1^2) / (t_1 * sin(alpha)) * t_2 * sin(alpha) - (1/2) * g * t_2^2 = h

Упрощая это уравнение, получаем:

(h + (1/2) * g * t_1^2) * t_2 - (1/2) * g * t_1^2 * t_2 = h * t_1 * sin(alpha)

Раскрывая скобки и упрощая, получаем:

h * t_2 + (1/2) * g * t_1^2 * t_2 - (1/2) * g * t_1^2 * t_2 = h * t_1 * sin(alpha)

Упрощая ещё раз, получаем:

h * t_2 = h * t_1 * sin(alpha)

Сокращая h с обеих сторон, получаем:

t_2 = t_1 * sin(alpha)

Из этого уравнения мы можем выразить sin(alpha):

sin(alpha) = t_2 / t_1

Теперь мы можем использовать значение sin(alpha) для вычисления начальной скорости:

v_0 = (h + (1/2) * g * t_1^2) / (t_1 * sin(alpha))

Подставляя выражение для sin(alpha), получаем:

v_0 = (h + (1/2) * g * t_1^2) / (t_1 * (t_2 / t_1))

Упрощая это выражение, получаем:

v_0 = (h + (1/2) * g * t_1) / t_2

Теперь мы можем подставить известные значения h, t_1 и t_2 в это выражение

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос