
Вероятность получить за некоторый курс по математике отличную отметку составляет 0,3. Какова
вероятность того, что среди семи случайно выбранных студентов более четырех не будут иметь за этот курс отличную оценку?

Ответы на вопрос

Ответ:
я не знаю
Пошаговое объяснение:
советую учиться!



Probability of Getting an Excellent Grade
The probability of getting an excellent grade in a certain math course is 0.3. We want to find the probability that among seven randomly selected students, more than four will not have an excellent grade in this course.
To solve this problem, we can use the binomial distribution formula. The binomial distribution is used to calculate the probability of a certain number of successes in a fixed number of independent Bernoulli trials.
In this case, the number of trials is seven (as we are selecting seven students), and the probability of success (getting an excellent grade) is 0.3.
Let's calculate the probability using the binomial distribution formula:
P(X > 4) = 1 - P(X ≤ 4)
Where: - P(X > 4) is the probability of having more than four students without an excellent grade. - P(X ≤ 4) is the probability of having four or fewer students without an excellent grade.
To calculate P(X ≤ 4), we need to sum the probabilities of having 0, 1, 2, 3, and 4 students without an excellent grade.
Now, let's calculate the probabilities step by step:
1. Probability of having 0 students without an excellent grade: - P(X = 0) = (7 choose 0) * (0.3^0) * (0.7^7) = 0.7^7 = 0.0823543
2. Probability of having 1 student without an excellent grade: - P(X = 1) = (7 choose 1) * (0.3^1) * (0.7^6) = 7 * 0.3 * 0.7^6 = 0.2334744
3. Probability of having 2 students without an excellent grade: - P(X = 2) = (7 choose 2) * (0.3^2) * (0.7^5) = 21 * 0.3^2 * 0.7^5 = 0.3086997
4. Probability of having 3 students without an excellent grade: - P(X = 3) = (7 choose 3) * (0.3^3) * (0.7^4) = 35 * 0.3^3 * 0.7^4 = 0.2319174
5. Probability of having 4 students without an excellent grade: - P(X = 4) = (7 choose 4) * (0.3^4) * (0.7^3) = 35 * 0.3^4 * 0.7^3 = 0.1210608
Now, let's calculate P(X ≤ 4):
P(X ≤ 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.0823543 + 0.2334744 + 0.3086997 + 0.2319174 + 0.1210608 = 0.9775066
Finally, we can calculate P(X > 4):
P(X > 4) = 1 - P(X ≤ 4) = 1 - 0.9775066 = 0.0224934
Therefore, the probability that among seven randomly selected students, more than four will not have an excellent grade in this math course is approximately 0.0224934.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili