Объем цилиндра 32 π , площадь основания 16 π. Найти площадь полной поверхности.
Ответы на вопрос
Ответ:
48π (ед.²)
Пошаговое объяснение:
Дано: Vц=32π
Sосн.=16π
Найти:
Sполн.-?
Решение:
Vц. = Sосн.·h, где h - площадь цилиндра.
Найдем высоту:
h = Vц. : Sосн. = 32π : 16π = 2
Площадь полной поверхности равна сумме площадей боковой поверхности и двух оснований.
Площадь боковой поверхности равна произведению длины окружности его основания на высоту.
Sбок. = 2πrh.
Радиус найдем из площади основания:
πr² = 16π ⇒ r=4
Теперь найдем Sбок.:
Sбок.=2π·4·2 = 16π
Sполн. = Sбок.+2Sосн. = 16π + 2·16π=48π (ед.²)
Для решения этой задачи, нам нужно знать формулы для объема и площади поверхности цилиндра.
Объем цилиндра вычисляется по формуле: \[ V = \pi r^2 h, \]
где \( r \) - радиус основания цилиндра, \( h \) - высота цилиндра.
Площадь основания цилиндра вычисляется по формуле: \[ S_{\text{осн}} = \pi r^2. \]
Площадь полной поверхности цилиндра состоит из двух частей: площади боковой поверхности и двух площадей оснований.
Площадь боковой поверхности цилиндра вычисляется по формуле: \[ S_{\text{бок}} = 2 \pi r h. \]
Итак, площадь полной поверхности цилиндра равна сумме площади боковой поверхности и двух площадей оснований: \[ S_{\text{полн}} = S_{\text{бок}} + 2S_{\text{осн}}. \]
У нас даны объем цилиндра и площадь основания: \[ V = 32\pi, \] \[ S_{\text{осн}} = 16\pi. \]
Мы также можем использовать формулу объема для выражения высоты цилиндра: \[ 32\pi = \pi r^2 h. \] Отсюда получаем, что высота цилиндра \( h = \frac{32}{r^2} \).
Теперь мы можем подставить это значение высоты в формулу для площади боковой поверхности: \[ S_{\text{бок}} = 2\pi r \left(\frac{32}{r^2}\right). \]
Упрощаем выражение: \[ S_{\text{бок}} = \frac{64\pi}{r}. \]
Теперь подставим все значения в формулу для площади полной поверхности: \[ S_{\text{полн}} = \frac{64\pi}{r} + 2(16\pi). \]
Упрощаем выражение: \[ S_{\text{полн}} = \frac{64\pi}{r} + 32\pi. \]
Это и есть итоговая формула для площади полной поверхности цилиндра.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
