Вопрос задан 05.11.2023 в 10:04. Предмет Математика. Спрашивает Нурсултанова Диляра.

Найдите целые решение системы неравенство 4х-17>2х-5. 5х+10>8х-17

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Григорьева Елизавета.

Ответ:

1) x∈(6, +∞)

2) x∈(-∞, -9)

Если не трудно, можешь пометить ответ лучшим

Пошаговое объяснение:

1)

4x-17>2x-5\\4x-2x > -5 +17\\2x > 12\\x > 6

2)

5x+10>8x-17\\-3x > -27\\x < 9

0 0
Отвечает Александров Борис.

Ответ:

x > 6 x < 9

Пошаговое объяснение:

4x - 2x > -5 + 17

2x > 12

x > 12:2

x > 6

5x - 8x > -17 - 10

-3x > - 27

x < 9

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения системы неравенств `4x - 17 > 2x - 5` и `5x + 10 > 8x - 17`, вам необходимо выполнить следующие шаги:

1. Упростите каждое неравенство. Для этого вычтите одно уравнение из другого. В данном случае, вычитание `2x - 5` из `4x - 17` даст вам `2x > 12`. И вычитание `4x - 17` из `5x + 10` даст вам `x > -7` .

2. Найдите общие решения. Общее решение системы неравенств - это пересечение всех решений каждого неравенства. В данном случае, общее решение будет `x > -7` и `x > 12`, что даст вам `x > 12` .

3. Проверьте целочисленность решения. Если решение не является целым числом, то это не является целым решением системы. В данном случае, `x > 12` является целым решением, так как `x` больше `12` .

Итак, целое решение системы неравенств `4x - 17 > 2x - 5` и `5x + 10 > 8x - 17` - это `x > 12`.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос