Вопрос задан 26.10.2023 в 12:04. Предмет Математика. Спрашивает Хмара Валера.

со станции вышел товарный поезд со скоростью 56 км/ ч. через 2 часа с той же станции и в том же

направлении вышел пассажирский поезд со скоростью 84 км/ч. на каком расстоянии друг от друга будут поезда через 1 час 30 минут после выхода пассажирского поезда? через сколько времени после своего выхода пассажирский поезд догонит товарный?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Варвара Сахарова.
Я не знаю что то забыла такие задачи постораюсь вспомнить
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have a freight train and a passenger train that start from the same station and travel in the same direction. The freight train has a speed of 56 km/h, and the passenger train has a speed of 84 km/h. We need to find the distance between the two trains after 1 hour and 30 minutes, as well as the time it takes for the passenger train to catch up to the freight train.

Distance between the Trains after 1 hour and 30 minutes

To find the distance between the two trains after 1 hour and 30 minutes, we need to calculate the distance each train has traveled in that time.

The freight train travels at a speed of 56 km/h. In 1 hour and 30 minutes (or 1.5 hours), it will have traveled a distance of: Distance of freight train = Speed of freight train * Time = 56 km/h * 1.5 hours

Similarly, the passenger train travels at a speed of 84 km/h. In 1 hour and 30 minutes, it will have traveled a distance of: Distance of passenger train = Speed of passenger train * Time = 84 km/h * 1.5 hours

To find the distance between the two trains, we subtract the distance traveled by the freight train from the distance traveled by the passenger train: Distance between the trains = Distance of passenger train - Distance of freight train

Let's calculate the distances.

Calculation

The distance traveled by the freight train in 1 hour and 30 minutes is: Distance of freight train = 56 km/h * 1.5 hours = 84 km

The distance traveled by the passenger train in 1 hour and 30 minutes is: Distance of passenger train = 84 km/h * 1.5 hours = 126 km

Therefore, the distance between the two trains after 1 hour and 30 minutes is: Distance between the trains = Distance of passenger train - Distance of freight train = 126 km - 84 km = 42 km

So, the trains will be 42 km apart after 1 hour and 30 minutes.

Time for the Passenger Train to Catch up to the Freight Train

To find the time it takes for the passenger train to catch up to the freight train, we need to calculate the time it takes for the passenger train to cover the initial distance between the two trains.

The initial distance between the two trains is 42 km (as calculated above). The relative speed between the two trains is the difference in their speeds: Relative speed = Speed of passenger train - Speed of freight train = 84 km/h - 56 km/h = 28 km/h

To find the time it takes for the passenger train to catch up to the freight train, we divide the initial distance by the relative speed: Time for passenger train to catch up = Initial distance / Relative speed = 42 km / 28 km/h

Let's calculate the time.

Calculation

The time it takes for the passenger train to catch up to the freight train is: Time for passenger train to catch up = 42 km / 28 km/h = 1.5 hours

Therefore, the passenger train will catch up to the freight train after 1.5 hours.

Summary

To summarize: - The distance between the two trains after 1 hour and 30 minutes is 42 km. - The passenger train will catch up to the freight train after 1.5 hours.

Please let me know if you need any further assistance.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос