
Найдите функцию y=f(x), удовлетворяющую заданному условию( дифференциальному уравнению )
y'=3X^2-6X^3

Ответы на вопрос

Ответ:
Дифференциальным уравнением первого порядка называется уравнение вида
F(x, y, y
′
) = 0, (0.1)
в котором x — независимая переменная, y(x) — неизвестная функция. Дифференциальным уравнением первого порядка, разрешенным относительно
производной, называется уравнение
dy
dx = f(x, y). (0.2)
Правую часть уравнения (0.2) будем считать определенной на некотором открытом множестве D плоскости (x, y). Иногда уравнение (0.2) записывают
в виде
M(x, y) dx + N(x, y) dy = 0 (0.3)
и называют уравнением первого порядка, записанным в дифференциалах.
Решением уравнения (0.2) (или (0.3)) на интервале I оси x называется
любая дифференцируемая функция y = φ(x), которая при подстановке в
уравнение обращает его в тождество на I . Общим решением уравнения (0.2)
называется множество всех его решений. Общее решение зависит от одной
произвольной постоянной C и дается формулой
y = φ(x, C). (0.4)
Выражение вида
Φ(x, y, C) = 0, (0.5)
из которого y определяется неявно как функция от x называется общим
интегралом уравнения (0.2).
Решить уравнение (0.2) означает найти его общее решение или общий интеграл. При этом предпочтение, как правило, отдается более компактной записи ответа.
Формы записи уравнения в виде (0.2) или (0.3) равносильны и из одной
записи можно получить другую. Однако, в некоторых случаях, форма записи (0.3) оказывается предпочтительнее, так как в нее переменные x и y входят симметрично. Поэтому, если независимую переменную и искомую функцию поменять местами (разрешить уравнение относительно dx
dy ), то общее решение x = ψ(y, C) полученного уравнения определит
Пошаговое объяснение:



Чтобы найти функцию y = f(x), удовлетворяющую данному дифференциальному уравнению y' = 3x^2 - 6x^3, мы можем воспользоваться методом интегрирования.
Дифференциальное уравнение имеет вид:
y' = 3x^2 - 6x^3
Теперь интегрируем обе стороны уравнения по переменной x:
∫(1 dy) = ∫(3x^2 - 6x^3 dx)
Интегрируем каждое слагаемое отдельно:
∫ dy = ∫(3x^2 dx) - ∫(6x^3 dx)
Интегрируем:
y = x^3 - 2x^4 + C
где C - произвольная постоянная интегрирования.
Таким образом, функция y(x), удовлетворяющая данному дифференциальному уравнению, имеет вид:
y(x) = x^3 - 2x^4 + C, где C - произвольная постоянная.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili