
На некотором острове все местные жители лжецы или рыцари. Рыцари всегда говорят правду, лжецы
всегда лгут. В ряд выстроились 2021 местных жителей, и одного из них (только ero) зовут Петя, и он — рыцарь. Каждый в ряду, кроме Пети, заявил: "Между мной и Петей стоят ровно три лжеца". Какое наибольшее число лжецов может быть в этом ряду Дам 65 баллов

Ответы на вопрос

1213
Ну нсли Петя не лжец, 3 по-середине лжецы, а 5-й сказал правду, то лжецов 3/5 от всего. 2021/5•3= 1212,6. Т. к. у нас не может быть 0,6 человека, округляем. 1212,6≈1213



ответ
2018 наименьшее наибольшее 2019
Пошаговое объяснение:



Давайте разберемся в этой задаче. У нас есть 2021 местный житель, из которых одного зовут Петя, и он является рыцарем. Остальные 2020 человек заявили, что между каждым из них и Петей стоят ровно три лжеца.
Если предположить, что все остальные местные жители, кроме Пети, говорят правду, то это бы означало, что между каждым из них и Петей стоят только два лжеца. Но по условию задачи каждый из них заявил, что между ним и Петей стоят ровно три лжеца, что противоречит предположению, что они говорят правду.
Следовательно, все остальные местные жители, кроме Пети, являются лжецами. Это означает, что среди этих 2020 человек 2020 - 1 = 2019 лжецов.
Таким образом, наибольшее число лжецов в этом ряду составляет 2019.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili