
Log3 5 * log5 8/ log3 4


Ответы на вопрос




To simplify the expression:
log3(5) * log5(8) / log3(4)
We can use logarithm properties, specifically the change of base formula, which states:
log_b(a) = log_c(a) / log_c(b)
Let's apply this formula to each term:
- log3(5) = log(5) / log(3)
- log5(8) = log(8) / log(5)
- log3(4) = log(4) / log(3)
Now, the expression becomes:
(log(5) / log(3)) * (log(8) / log(5)) / (log(4) / log(3))
Next, we can simplify further by canceling out common logarithms:
(log(5) / log(3)) * (log(8) / log(5)) / (log(4) / log(3)) = (log(5) / log(5)) * (log(8) / log(4))
Since log(a) / log(a) = 1 for any positive number a, we have:
1 * (log(8) / log(4))
Now, we can simplify the remaining logarithms:
log(8) = log(2^3) = 3 * log(2) log(4) = log(2^2) = 2 * log(2)
So, the expression becomes:
1 * (3 * log(2) / (2 * log(2)))
Now, we can cancel out the common factor of log(2):
(3/2) * (log(2) / log(2)) = 3/2
Therefore, the simplified value of the expression log3(5) * log5(8) / log3(4) is 3/2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili