
7cos(arctg √3/3+arcsin(-√3/2) ).


Ответы на вопрос




To simplify the expression 7cos(arctg(√3/3) + arcsin(-√3/2)), we can use the trigonometric identities and properties to break it down step by step.
First, let's find the values of the trigonometric functions for the angles involved:
- arctg(√3/3) is the same as arctan(√3/3). To find the reference triangle for this angle, we consider a right triangle with an angle θ and sides √3 and 3. Using the Pythagorean theorem, we find the length of the hypotenuse to be 2. Therefore, sin(θ) = √3/2, and cos(θ) = 1/2.
- arcsin(-√3/2) is an angle whose sine is -√3/2. This corresponds to an angle of -π/3 or -60 degrees.
Now, let's rewrite the expression with these values: 7cos(arctg(√3/3) + arcsin(-√3/2)) = 7cos(θ + (-π/3))
Use the sum of angles formula for cosine: cos(θ + (-π/3)) = cos(θ)cos(-π/3) - sin(θ)sin(-π/3)
Plug in the values we found earlier: = (1/2)cos(-π/3) - (√3/2)sin(-π/3)
We know that cos(-π/3) = cos(π/3) and sin(-π/3) = -sin(π/3). So, we have: = (1/2)cos(π/3) + (√3/2)sin(π/3)
Using the values of sin(π/3) and cos(π/3), which can be found from a 30-60-90 triangle, where the hypotenuse is 2: sin(π/3) = √3/2 cos(π/3) = 1/2
Substitute these values into the expression: = (1/2)(1/2) + (√3/2)(√3/2)
Simplify further: = 1/4 + 3/4
Add the fractions: = 4/4
Finally, simplify to the final result: = 1
So, 7cos(arctg(√3/3) + arcsin(-√3/2)) simplifies to 1.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili