
(8/y)*100-(10/x)*100=15


Ответы на вопрос




To solve the equation (8/y)*100 - (10/x)*100 = 15, we need to find the values of x and y that satisfy the equation. Let's go step by step:
Step 1: Remove the percentages for easier calculation: (8/y) - (10/x) = 0.15
Step 2: To eliminate the fractions, we can multiply the entire equation by the least common multiple (LCM) of y and x. In this case, the LCM of y and x is xy: xy * (8/y) - xy * (10/x) = xy * 0.15
Step 3: Simplify the equation: 8x - 10y = 0.15xy
Step 4: Move all the terms to one side to have the equation equal to zero: 8x - 10y - 0.15xy = 0
Step 5: Factor the equation if possible: x(8 - 0.15y) - 10y = 0
Step 6: Solve for x in terms of y: x = (10y) / (8 - 0.15y)
Step 7: You can also solve for y in terms of x: 10y = 8x - 0.15xy y = (8x) / (10 + 0.15x)
Now, you have equations for x and y in terms of each other, but finding exact values for x and y would require more information or additional equations. If you have any additional information or constraints for x and y, please provide them, and I can assist further in finding the specific values.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili