
(х-4)^2*(x^2-2x-3)<=0 <= - меньше или равно


Ответы на вопрос




(x-4)²=0 или (x²-2*x-3)=0
(x-4)*(x-4)=0
x-4=0
x=4
x²-2*x-3 =0
D=4-4*1*(-3)=4+12=16
x1 = -1 x2=3
указанная функция меньше или равна 0 на интералах
(-∞;-1]∪[0;3]



To solve the inequality , we need to find the values of that satisfy this inequality. To do that, we'll follow these steps:
Step 1: Factorize the expression inside the inequality.
Step 2: Identify the critical points where the expression equals zero.
Step 3: Test intervals between critical points to determine the sign of the expression in each interval.
Step 4: Determine the intervals that satisfy the inequality .
Let's go through each step:
Step 1: Factorize the expression inside the inequality.
Step 2: Identify the critical points where the expression equals zero. The critical points are the values of that make any of the factors equal to zero. gives gives gives
Step 3: Test intervals between critical points to determine the sign of the expression in each interval.
Test : Choose , which is positive.
Test : Choose , which is negative.
Test : Choose , which is positive.
Test : Choose , which is positive.
Step 4: Determine the intervals that satisfy the inequality .
The intervals that satisfy the inequality are .
So, the solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili