
4 sin ^2x-4 sin x+1 =0


Ответы на вопрос




To solve the equation 4sin^2(x) - 4sin(x) + 1 = 0, we can use the quadratic formula. Let's consider the equation in terms of sin(x):
4sin^2(x) - 4sin(x) + 1 = 0
Now, let's compare it with the standard form of a quadratic equation:
ax^2 + bx + c = 0
In our case, a = 4, b = -4, and c = 1. Now, we can use the quadratic formula to find the value(s) of sin(x):
The quadratic formula states that for an equation of the form ax^2 + bx + c = 0, the solutions for x are given by:
x = (-b ± √(b^2 - 4ac)) / 2a
Plugging in the values from our equation:
sin(x) = [4 ± √((-4)^2 - 4 * 4 * 1)] / (2 * 4) sin(x) = [4 ± √(16 - 16)] / 8 sin(x) = (4 ± √0) / 8
Now, since the discriminant (b^2 - 4ac) is zero, we will get a single real solution for sin(x):
sin(x) = (4 + 0) / 8 sin(x) = 4 / 8 sin(x) = 1/2
So, the solution for the equation is sin(x) = 1/2.
Now, to find the values of x, we can take the inverse sine (arcsin) of both sides:
x = arcsin(1/2)
The arcsin function gives us the angle whose sine is 1/2. There are two solutions within the range of [-π/2, π/2] that satisfy sin(x) = 1/2, which are:
- x = π/6 (30 degrees)
- x = 5π/6 (150 degrees)
So, the solutions to the equation 4sin^2(x) - 4sin(x) + 1 = 0 are x = π/6 and x = 5π/6 (in radians) or x = 30 degrees and x = 150 degrees.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili