Вопрос задан 28.07.2023 в 19:54. Предмет Математика. Спрашивает Марцулевич Валерия.

Если sin2A=0.5,то найдите sin^4+cos^4

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шихалев Дима.

 {sin}^{4}  \alpha  +  {cos}^{4}  \alpha  =  {sin}^{4}  \alpha  +  {cos}^{4}  \alpha  + 2 {sin}^{2}  \alpha   {cos}^{2}  \alpha  - 2 {sin}^{2}  \alpha  {cos}^{2}  \alpha  =  {( {sin}^{2}  \alpha  +  {cos}^{2}  \alpha )}^{2}  - 2 {sin}^{2}  \alpha  {cos}^{2}  \alpha  = 1 - 2 {sin}^{2}  \alpha  {cos}^{2}  \alpha  \\  \\ sin2 \alpha  = 0.5 \\ 2sin \alpha cos \alpha  = 0.5 \\ sin \alpha cos \alpha  =  \frac{1}{4}  \\  {sin}^{2}  \alpha  {cos}^{2}  \alpha  =  \frac{1}{16} \\   \\ 1 - 2 \times  \frac{1}{16}  = 1 -  \frac{1}{8}  =  \frac{7}{8}
Ответ: 7/8.
0 0
Отвечает Смирнов Артём.

 \sin^4\alpha +\cos^4\alpha =(\sin^2\alpha)^2 +(\cos^2\alpha )^2=(\sin^2\alpha)^2+2\sin^2\alpha\cos^2\alpha+\\\\+(\cos^2\alpha )^2-2\sin^2\alpha\cos^2\alpha=(\sin^2\alpha+\cos^2\alpha)^2-\frac{1}{2} \cdot4\sin^2\alpha\cos^2\alpha=\\ \\ =1^2-\frac{1}{2} \cdot2^2\sin^2\alpha\cos^2\alpha=1-\frac{1}{2} \cdot(2\sin\alpha\cos\alpha )^2=1-\frac{1}{2} \cdot(\sin 2\alpha )^2=\\\\=1-\frac{1}{2} \cdot(0,5)^2=1-0,5\cdot0,25=1-0,125=0,875

Ответ:  0,875

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To find the value of sin^4(A) + cos^4(A) given sin(2A) = 0.5, we can use trigonometric identities and algebraic manipulations.

Let's start with the given equation: sin(2A) = 0.5

Using the double-angle identity for sine, we have: sin(2A) = 2sin(A)cos(A)

So we can rewrite the given equation as: 2sin(A)cos(A) = 0.5

Now, let's focus on the expression we want to find: sin^4(A) + cos^4(A)

We know the trigonometric identity: sin^2(A) + cos^2(A) = 1

We can square this identity to get: (sin^2(A) + cos^2(A))^2 = 1

Expanding the left-hand side: (sin^2(A))^2 + 2sin^2(A)cos^2(A) + (cos^2(A))^2 = 1

Now, let's use another trigonometric identity: 2sin^2(A)cos^2(A) = sin^2(2A)

Substitute this into the previous equation: (sin^2(A))^2 + sin^2(2A) + (cos^2(A))^2 = 1

Now, we can rearrange this equation to get: (sin^2(A))^2 + (cos^2(A))^2 = 1 - sin^2(2A)

We know that sin^2(A) + cos^2(A) = 1, so (sin^2(A))^2 + (cos^2(A))^2 can also be written as: (sin^2(A))^2 + (1 - sin^2(A))^2 = 1 - sin^2(2A)

Now, expand and simplify: (sin^2(A))^2 + (1 - 2sin^2(A) + sin^2(A))^2 = 1 - sin^2(2A)

(sin^2(A))^2 + (1 - sin^2(A))^2 = 1 - sin^2(2A)

Now, recall that sin(2A) = 0.5: (sin^2(A))^2 + (1 - sin^2(A))^2 = 1 - (0.5)^2

(sin^2(A))^2 + (1 - sin^2(A))^2 = 1 - 0.25

(sin^2(A))^2 + (1 - sin^2(A))^2 = 0.75

Now, we can simplify further: (sin^2(A))^2 + (1 - sin^2(A))^2 = 3/4

We have a squared term and its complement squared, and we want to find sin^4(A) + cos^4(A), so let's rewrite the above equation using the following identities: 1 - sin^2(A) = cos^2(A)

(sin^2(A))^2 + cos^4(A) = 3/4

Now, let's solve for cos^4(A): cos^4(A) = 3/4 - (sin^2(A))^2

Since sin^2(A) + cos^2(A) = 1, we can rewrite sin^2(A) as: sin^2(A) = 1 - cos^2(A)

Now, substitute this into the previous equation: cos^4(A) = 3/4 - (1 - cos^2(A))^2

Now, let's expand and simplify: cos^4(A) = 3/4 - (1 - 2cos^2(A) + cos^4(A))

Now, we can solve for cos^4(A): cos^4(A) - cos^4(A) + 2cos^2(A) - 1 = 3/4

2cos^2(A) - 1 = 3/4

2cos^2(A) = 3/4 + 1

2cos^2(A) = 7/4

cos^2(A) = 7/4 * 1/2

cos^2(A) = 7/8

Now, we can find sin^2(A) using sin^2(A) = 1 - cos^2(A): sin^2(A) = 1 - 7/8

sin^2(A) = 1/8

Now, finally, we can find sin^4(A) + cos^4(A): sin^4(A) + cos^4(A) = (sin^2(A))^2 + (cos^2(A))^2

sin^4(A) + cos^4(A) = (1/8)^2 + (7/8)^2

sin^4(A) + cos^4(A) = 1/64 + 49/64

sin^4(A) + cos^4(A) = 50/64

sin^4(A) + cos^4(A) = 25/32

So, sin^4(A) + cos^4(A) is equal to 25/32.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос