
Если sin2A=0.5,то найдите sin^4+cos^4


Ответы на вопрос

Ответ: 7/8.



Ответ:



To find the value of sin^4(A) + cos^4(A) given sin(2A) = 0.5, we can use trigonometric identities and algebraic manipulations.
Let's start with the given equation: sin(2A) = 0.5
Using the double-angle identity for sine, we have: sin(2A) = 2sin(A)cos(A)
So we can rewrite the given equation as: 2sin(A)cos(A) = 0.5
Now, let's focus on the expression we want to find: sin^4(A) + cos^4(A)
We know the trigonometric identity: sin^2(A) + cos^2(A) = 1
We can square this identity to get: (sin^2(A) + cos^2(A))^2 = 1
Expanding the left-hand side: (sin^2(A))^2 + 2sin^2(A)cos^2(A) + (cos^2(A))^2 = 1
Now, let's use another trigonometric identity: 2sin^2(A)cos^2(A) = sin^2(2A)
Substitute this into the previous equation: (sin^2(A))^2 + sin^2(2A) + (cos^2(A))^2 = 1
Now, we can rearrange this equation to get: (sin^2(A))^2 + (cos^2(A))^2 = 1 - sin^2(2A)
We know that sin^2(A) + cos^2(A) = 1, so (sin^2(A))^2 + (cos^2(A))^2 can also be written as: (sin^2(A))^2 + (1 - sin^2(A))^2 = 1 - sin^2(2A)
Now, expand and simplify: (sin^2(A))^2 + (1 - 2sin^2(A) + sin^2(A))^2 = 1 - sin^2(2A)
(sin^2(A))^2 + (1 - sin^2(A))^2 = 1 - sin^2(2A)
Now, recall that sin(2A) = 0.5: (sin^2(A))^2 + (1 - sin^2(A))^2 = 1 - (0.5)^2
(sin^2(A))^2 + (1 - sin^2(A))^2 = 1 - 0.25
(sin^2(A))^2 + (1 - sin^2(A))^2 = 0.75
Now, we can simplify further: (sin^2(A))^2 + (1 - sin^2(A))^2 = 3/4
We have a squared term and its complement squared, and we want to find sin^4(A) + cos^4(A), so let's rewrite the above equation using the following identities: 1 - sin^2(A) = cos^2(A)
(sin^2(A))^2 + cos^4(A) = 3/4
Now, let's solve for cos^4(A): cos^4(A) = 3/4 - (sin^2(A))^2
Since sin^2(A) + cos^2(A) = 1, we can rewrite sin^2(A) as: sin^2(A) = 1 - cos^2(A)
Now, substitute this into the previous equation: cos^4(A) = 3/4 - (1 - cos^2(A))^2
Now, let's expand and simplify: cos^4(A) = 3/4 - (1 - 2cos^2(A) + cos^4(A))
Now, we can solve for cos^4(A): cos^4(A) - cos^4(A) + 2cos^2(A) - 1 = 3/4
2cos^2(A) - 1 = 3/4
2cos^2(A) = 3/4 + 1
2cos^2(A) = 7/4
cos^2(A) = 7/4 * 1/2
cos^2(A) = 7/8
Now, we can find sin^2(A) using sin^2(A) = 1 - cos^2(A): sin^2(A) = 1 - 7/8
sin^2(A) = 1/8
Now, finally, we can find sin^4(A) + cos^4(A): sin^4(A) + cos^4(A) = (sin^2(A))^2 + (cos^2(A))^2
sin^4(A) + cos^4(A) = (1/8)^2 + (7/8)^2
sin^4(A) + cos^4(A) = 1/64 + 49/64
sin^4(A) + cos^4(A) = 50/64
sin^4(A) + cos^4(A) = 25/32
So, sin^4(A) + cos^4(A) is equal to 25/32.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili