Вопрос задан 28.07.2023 в 04:27. Предмет Математика. Спрашивает Морозов Ярослав.

3*x^2-x+5>0 cos 3*x = 1,05 Помогите решить)))

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Володовский Андрей.

13 будет отвечаю тебе

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного неравенства, нам нужно разбить его на два уравнения и найти интервалы, на которых каждое из них удовлетворяет условию. Для начала, разберемся с уравнением:

cos(3x) = 1.05

Однако, есть проблема, так как значение косинуса не может быть больше 1 по определению функции. Поэтому это уравнение не имеет решений.

Теперь перейдем к неравенству:

3*x^2 - x + 5 > 0

Чтобы найти решение этого неравенства, используем метод интервалов.

  1. Найдем критические точки, где выражение становится равным нулю:

3*x^2 - x + 5 = 0

Для этого можно воспользоваться квадратным уравнением или дискриминантом:

D = b^2 - 4ac D = (-1)^2 - 4 * 3 * 5 D = 1 - 60 D = -59

Так как дискриминант отрицателен, уравнение не имеет действительных корней и критических точек.

  1. Определим знак выражения 3*x^2 - x + 5 в интервалах между критическими точками (которых у нас нет) и на краях области определения функции.

Так как у коэффициента при x^2 положительный (3 > 0), у нас будет парабола с ветвями, которые направлены вверх. Это означает, что график выражения выше оси x.

Таким образом, неравенство 3*x^2 - x + 5 > 0 будет выполняться для всех значений x, так как график всегда будет выше оси x и не пересечет ее.

Итак, решение неравенства: x принадлежит всему множеству действительных чисел: (-∞, +∞).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос