
Cos ( 27/2 - x )=√ 3/2


Ответы на вопрос





To find the value of 'x' in the equation cos(27/2 - x) = √3/2, we can use trigonometric identities and properties.
First, let's recall the trigonometric identity: cos(π/6) = √3/2.
Now, observe that the given equation is similar to the identity above. We can rewrite the equation as:
cos(27/2 - x) = cos(π/6)
To find 'x,' we need to equate the arguments of the cosine functions:
27/2 - x = π/6
Now, let's solve for 'x':
27/2 - x = π/6
To isolate 'x,' subtract π/6 from both sides:
x = 27/2 - π/6
Now, let's convert 27/2 and π/6 to a common denominator:
x = (27/2) - (π/6) = (27/2) - (π/6) * (3/3)
x = (27/2) - (3π/18) = (27/2) - (π/6)
Now, you can express the answer either in terms of π or as a decimal approximation. The final result will be:
x = 27/2 - π/6 ≈ 4.3801 radians (in terms of π)
x ≈ 1.2188 radians (approximation in decimal form)
Please note that the exact value of 'x' will be in radians. If you need it in degrees, you can convert it using the conversion factor: 1 radian ≈ 57.2958 degrees.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili