
Tg(пи/5 + 3x)=0 2cos(пи/4 + 2x)= - корень из 2 4sin x/3 * cos x/3 = 2 корень из 3 2cos^2x - 7cosx
- 4 = 0

Ответы на вопрос

Ответ:
-π/15+πk/3, -π/8 ±3π/8 + πk, k∈Z, (-1)^kπ/2 +3πk/2, ±2π/3 +2πk, k∈Z
Пошаговое объяснение:
1) tg(π/5+3x) = 0
π/5+3x=arctg0+πk, k∈Z
π/5+3x= πk
3x= -π/5 +πk
x= -π/15+πk/3, k∈Z
2) cos(π/4+2x)= -√2/2
π/4+2x=±arccos(-√2/2)+2πk, k∈Z
2x=-π/4 ±3π/4+2πk
x= - π/8 ±3π/8+πk, k∈Z
3) 4sin(x/3)cos(x/3) = 2√3
2sin(2x/3) = √3
sin(2x/3)=√3/2
2x/3=( -1)^k arcsin(√3/2)+πk
2x/3 = (-1)^k π/3 + πk
x= ( -1)^k π/2 + 3πk/2, k∈Z
4) D=(-7)²- 4*2*(-4)=81
cosx=(7±9)/4
cosx =4, решений нет;
cosx= -1/2
x= ±arccos(-1/2) +2πn
x= ± 2π/3+2πn, n∈Z



To solve each of the given trigonometric equations, we'll go through them one by one:
- Tg(π/5 + 3x) = 0:
The tangent function is equal to zero when its argument is an integer multiple of π. Therefore, we can write:
π/5 + 3x = nπ, where n is an integer.
Now, solve for x:
3x = nπ - π/5 x = (nπ - π/5) / 3
- 2cos(π/4 + 2x) = -√2:
Divide both sides by 2:
cos(π/4 + 2x) = -√2 / 2
The cosine function is equal to -√2/2 at certain special angles, such as π/3 and 5π/3:
π/4 + 2x = π/3 + 2nπ or π/4 + 2x = 5π/3 + 2nπ, where n is an integer.
Now, solve for x in each case:
a) π/4 + 2x = π/3 + 2nπ 2x = π/3 - π/4 + 2nπ x = (π/3 - π/4 + 2nπ) / 2
b) π/4 + 2x = 5π/3 + 2nπ 2x = 5π/3 - π/4 + 2nπ x = (5π/3 - π/4 + 2nπ) / 2
- 4sin(x/3) * cos(x/3) = 2√3:
Use the double-angle identity for sine: sin(2θ) = 2sin(θ)cos(θ).
4sin(x/3) * cos(x/3) = 2sin(2x/3) = 2√3
Now, solve for 2x/3:
2x/3 = π/3 + 2nπ or 2x/3 = 2π/3 + 2nπ, where n is an integer.
Now, solve for x in each case:
a) 2x/3 = π/3 + 2nπ x = (π/3 + 2nπ) * 3/2
b) 2x/3 = 2π/3 + 2nπ x = (2π/3 + 2nπ) * 3/2
- 2cos^2(x) - 7cos(x) - 4 = 0:
Let cos(x) = t, then the equation becomes:
2t^2 - 7t - 4 = 0
Now, solve this quadratic equation for t:
Using the quadratic formula: t = (-b ± √(b^2 - 4ac)) / 2a
where a = 2, b = -7, and c = -4
t = [7 ± √((-7)^2 - 4 * 2 * (-4))] / 2 * 2 t = [7 ± √(49 + 32)] / 4 t = [7 ± √81] / 4 t = [7 ± 9] / 4
Now, we have two possible values for t:
a) t = (7 + 9) / 4 = 16 / 4 = 4 b) t = (7 - 9) / 4 = -2 / 4 = -1/2
Recall that t = cos(x). Now, find the corresponding values of x for each case:
a) cos(x) = 4 Since the cosine function has a range of [-1, 1], there are no real solutions for this case.
b) cos(x) = -1/2 x = π ± 2nπ or x = 2π ± 2nπ, where n is an integer.
Now, we have found the solutions to each of the given trigonometric equations. Remember to check the domain of the original equations and verify if the solutions fall within the specified domain.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili