
Sin^5a-cos^5a=? если sina-cosa=1/2


Ответы на вопрос

Возводим левую и правую части равенства:



To find the value of sin^5(a) - cos^5(a), given that sin(a) - cos(a) = 1/2, we can use the trigonometric identity:
sin^2(a) - cos^2(a) = (sin(a) - cos(a))(sin(a) + cos(a))
Squaring both sides of the equation sin(a) - cos(a) = 1/2:
(sin(a) - cos(a))^2 = (1/2)^2 sin^2(a) - 2sin(a)cos(a) + cos^2(a) = 1/4
Now, using the given value of sin(a) - cos(a) = 1/2, we can substitute it into the equation:
(1/2)^2 - 2sin(a)cos(a) = 1/4 1/4 - 2sin(a)cos(a) = 1/4 -2sin(a)cos(a) = 0
Since sin(a) and cos(a) cannot both be zero (since they are not equal), the only solution is sin(a)cos(a) = 0.
Now, let's find the value of sin^5(a) - cos^5(a):
sin^5(a) - cos^5(a) = (sin^3(a) + sin^2(a)cos(a) + sin(a)cos^2(a) + cos^3(a))(sin(a) - cos(a))
Since we know sin(a)cos(a) = 0, the above equation simplifies to:
sin^5(a) - cos^5(a) = (sin^3(a) + cos^3(a))(sin(a) - cos(a))
Now, we can use the sum of cubes formula:
a^3 + b^3 = (a + b)(a^2 - ab + b^2)
Let a = sin(a) and b = cos(a):
sin^3(a) + cos^3(a) = (sin(a) + cos(a))(sin^2(a) - sin(a)cos(a) + cos^2(a))
Since sin(a)cos(a) = 0:
sin^3(a) + cos^3(a) = (sin(a) + cos(a))(sin^2(a) + cos^2(a))
And, since sin^2(a) + cos^2(a) = 1 (the Pythagorean identity):
sin^3(a) + cos^3(a) = (sin(a) + cos(a))(1)
Finally, substituting sin(a) - cos(a) = 1/2:
sin^5(a) - cos^5(a) = (1/2)(1)
sin^5(a) - cos^5(a) = 1/2
So, the value of sin^5(a) - cos^5(a) is 1/2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili