
Величина sin(-7π/4)+cos(7π/4)+tg(15π/4)-ctg(-7π/4) равна


Ответы на вопрос

Ответ:√2-2
Пошаговое объяснение:
sin(-7π/4)+cos(7π/4)+tg(15π/4)-ctg(-7π/4)=
(-sin(7π/4))+((cos(2π-π/4))+(tg(4π-π/4))+ctg(2π-π/4)=
sin(π/4)+cos(π/4)-tg(π/4)-ctg(π/4)=√2/2+√2/2-1-1=√2-2



To calculate the value of the given expression, let's break it down step by step:
Find the value of sin(-7π/4): Using the periodicity property of sine, sin(x) = -sin(x + 2π), we can rewrite -7π/4 as -7π/4 + 2π = -π/4. Now, sin(-π/4) = -sin(π/4) = -√2/2.
Find the value of cos(7π/4): Using the periodicity property of cosine, cos(x) = cos(x + 2π), we can rewrite 7π/4 as 7π/4 - 2π = -π/4. Now, cos(-π/4) = cos(π/4) = √2/2.
Find the value of tan(15π/4): Using the periodicity property of tangent, tan(x) = tan(x + π), we can rewrite 15π/4 as 15π/4 - π = 11π/4. Now, tan(11π/4) = tan(π/4) = 1.
Find the value of cot(-7π/4): Using the periodicity property of cotangent, cot(x) = cot(x + π), we can rewrite -7π/4 as -7π/4 + π = -3π/4. Now, cot(-3π/4) = -cot(3π/4) = -(-1) = 1.
Now, the expression becomes: sin(-7π/4) + cos(7π/4) + tan(15π/4) - cot(-7π/4) = -√2/2 + √2/2 + 1 - 1 = 0.
So, the value of the given expression is 0.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili