Вопрос задан 14.07.2023 в 07:44. Предмет Математика. Спрашивает Гусейханов Артур.

Выполни умножение многочленов: (0,1d– 4g) (0,01d2 + 0,4dg + 16g2)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ладонина Валентина.

Pешение:

Это формула куба разности:

(0,1d– 4g) (0,01d² + 0,4dg + 16g²) = (0,1d - 4g)³

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для выполнения умножения многочленов (0,1d - 4g) и (0,01d^2 + 0,4dg + 16g^2), распространяем каждый член первого многочлена на каждый член второго многочлена, затем собираем их вместе, сгруппировав одинаковые степени переменных. Важно помнить, что "d" и "g" - это переменные, и мы выполняем умножение алгебраически.

(0,1d - 4g) * (0,01d^2 + 0,4dg + 16g^2)

Теперь умножим каждый член первого многочлена на каждый член второго многочлена:

0,1d * 0,01d^2 + 0,1d * 0,4dg + 0,1d * 16g^2 - 4g * 0,01d^2 - 4g * 0,4dg - 4g * 16g^2

Теперь упростим каждое умножение:

0,001d^3 + 0,04dg^2 + 1,6dg - 0,04d^2g - 1,6dg^2 - 64g^3

Наконец, сгруппируем одинаковые степени переменных:

0,001d^3 - 0,04d^2g + 0,04dg^2 + 1,6dg - 64g^3

Таким образом, результат умножения многочленов (0,1d - 4g) и (0,01d^2 + 0,4dg + 16g^2) равен: 0,001d^3 - 0,04d^2g + 0,04dg^2 + 1,6dg - 64g^3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос