
F(x)=4x³+1-2x на [-1;1]


Ответы на вопрос

F(x) = 4x³−2x+1 на промежутке [-1; 1]:
F(−1) = 4·(−1)³−2·(−1)+1 = 4·(−1)+2+1 = −4+3 = −1
F(1) = 4·(1)³−2·(1)+1 = 4·(1)−2+1 = 4−1 = 3
Ответ: [−1; 3].



To find the extreme values of the function on the interval , we need to first find the critical points and then evaluate the function at these points and the endpoints of the interval.
Step 1: Find the critical points Critical points are the values of where the derivative of the function is equal to zero or does not exist. So, let's find the derivative :
Now, set the derivative equal to zero and solve for to find the critical points:
Solving for :
Step 2: Evaluate the function at the critical points and endpoints
Now, we need to evaluate the function at the critical points and the endpoints of the interval .
:
(approximately ):
(approximately ):
:
Step 3: Determine the extreme values
The extreme values on the interval are the maximum and minimum values of the function among the critical points and the endpoints.
The maximum value is 3, which occurs at .
The minimum value is approximately -1.632, which occurs at (approximately ).
So, the maximum value of the function is 3, and the minimum value is approximately -1.632.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili