Вопрос задан 12.01.2020 в 01:58. Предмет Геометрия. Спрашивает Нагорная Диана.

В равнобокой трапеции ABCD диагонали пересекаются в точке O. Точка делит диагональ BD в отношении

1/3 , большее основание 12 . Найдите меньшее основание
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сёмина Ульяна.
По свойству диагоналей трапеции, образуются два подобных треугольника ВОС иАОВ;  к=1/3, поэтому ВС=12/3=4
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам понадобятся свойства равнобедренной трапеции.

В равнобедренной трапеции диагонали равны между собой. Поэтому, если точка O делит диагональ BD в отношении 1/3, то это значит, что отрезок BO в 3 раза длиннее отрезка OD.

Пусть длина отрезка OD равна x. Тогда длина отрезка BO равна 3x.

Также известно, что большее основание равно 12. Пусть длина этого основания равна a.

Так как точка O делит диагональ BD в отношении 1/3, то отношение длины отрезка BO к длине отрезка BD равно 1/3. То есть:

BO/BD = 1/3

Так как диагонали равны, то OD = BD - BO. Подставим значения BO и BD:

x = (a - 3x) - это уравнение (1).

Также известно, что большее основание равно 12. То есть a = 12.

Подставим это значение в уравнение (1):

x = (12 - 3x)

Раскроем скобки:

x = 12 - 3x

Перенесем все x на одну сторону:

4x = 12

Разделим обе части уравнения на 4:

x = 3

Таким образом, длина отрезка OD равна 3.

Теперь найдем длину отрезка BO:

BO = 3 * x = 3 * 3 = 9.

Таким образом, меньшее основание равно 9.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос