
Помогите пожалуйста В прямоугольном треугольнике ABC(c=90) проведена высота CH .Найдите ее длину
,если AH=4и BH=16

Ответы на вопрос

Ответ:8 см
Объяснение:




Для решения данной задачи в прямоугольном треугольнике ABC с прямым углом в точке C и проведенной высотой CH необходимо использовать свойства прямоугольных треугольников.
Нахождение длины высоты CH:
1. По свойству прямоугольных треугольников, длина высоты CH равна произведению длин катетов, деленному на длину гипотенузы.
Формула: CH = (AH * BH) / AC
2. Из условия задачи известны значения AH = 4 и BH = 16.
3. Остается найти длину гипотенузы AC. Для этого можно воспользоваться теоремой Пифагора:
AC^2 = AH^2 + CH^2
Подставляем известные значения: AC^2 = 4^2 + CH^2
4. Так как AC = c (гипотенуза), исходя из условия, где c = 90, мы можем решить уравнение:
90^2 = 4^2 + CH^2
8100 - 16 = CH^2
CH^2 = 8084
CH ≈ √8084 ≈ 89.90 (округляем до двух знаков после запятой)
Таким образом, длина высоты CH примерно равна 89.90.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili