Вопрос задан 08.11.2023 в 03:28. Предмет Геометрия. Спрашивает Шитикова Анжелика.

Бісектриса гострого кута паралелограма MNFK перетинає його сторону NF у точці Q і ділить її на

відрізки NQ = 7см, QF = 10 см. Знайти периметр данного паралелограма.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте спершу з'ясуємо, які властивості мають бісектриси гострих кутів паралелограма. Бісектриса гострого кута у паралелограмі розділяє його протилежні кути на дві рівні частини. Це означає, що в даному випадку кути M і N дорівнюють один одному, так само як кути K і F.

Тепер, щоб знайти периметр паралелограма MNFK, нам потрібно врахувати, що протилежні сторони паралельні та рівні, тобто MN = FK, а також NF = MK.

З використанням заданих відомостей ми можемо скласти таку систему рівнянь: 1. NQ = 7 см, 2. QF = 10 см, 3. NF = MK.

Зауважте, що NF = MK = 7 см + 10 см = 17 см. Таким чином, ми можемо знайти значення всіх сторін паралелограма: 1. NF = 17 см, 2. NQ = 7 см, 3. QF = 10 см, 4. MK = 17 см.

Тепер, оскільки протилежні сторони паралельні та рівні, периметр паралелограма можна знайти за допомогою формули:

Периметр = 2 * (NF + NQ)

Підставляючи відомі значення, ми отримуємо:

Периметр = 2 * (17 см + 7 см) = 2 * 24 см = 48 см.

Отже, периметр даного паралелограма дорівнює 48 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос