Вопрос задан 20.09.2023 в 14:23. Предмет Геометрия. Спрашивает Боков Даниил.

сторона основания правильной треугольной пирамиды равна 6 см. а двугранный угол равен 60 градусов

найти объем
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ерполат Асел.

V=1/3Sосн*H

Sосн=1/2*6*6*корень из3деленное на2=9*корень из3

Проведем апофему из вершины пирамиды SH. Радиус вписанной окружности в основание отрезок OH=6/2корень из3=корень из3.

Из треугольника SOH найдем через тангенс 60 неизвестную высоту пирамиды SO.

SO=tg60*корень из 3=3

V=1/3*9*корень из3*3=9*корень из 3

Ответ:9*корень из 3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления объема правильной треугольной пирамиды можно воспользоваться следующей формулой:

V = (1/3) * S_base * h

Где: V - объем пирамиды S_base - площадь основания пирамиды h - высота пирамиды

Для начала найдем площадь основания. Поскольку у вас правильная треугольная пирамида, основание будет равно равностороннему треугольнику. Площадь равностороннего треугольника можно вычислить по формуле:

S_base = (a^2 * √3) / 4

Где: a - длина стороны основания

В данном случае a = 6 см, поэтому:

S_base = (6^2 * √3) / 4 = (36 * √3) / 4 = 9√3 см²

Теперь, чтобы найти высоту пирамиды (h), мы можем воспользоваться тригонометрией, так как у нас известен двугранный угол (60 градусов). Высота пирамиды будет являться высотой боковой грани треугольника на основании.

h = a * √3

h = 6 см * √3

Теперь у нас есть все необходимые данные для вычисления объема:

V = (1/3) * S_base * h V = (1/3) * (9√3 см²) * (6 см * √3) V = (1/3) * (9√3 см²) * (6 см * √3) V = (1/3) * 54 см^2 * 3 V = 54 см^2

Таким образом, объем правильной треугольной пирамиды равен 54 кубическим сантиметрам.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос