Вопрос задан 19.09.2023 в 17:07. Предмет Геометрия. Спрашивает Магидиев Радель.

Боковое ребро правильной треугольной пирамиды равно 5см, а высота - корень из 13. Найдите площадь

боковой поверхности.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жумагазиев Азат.

1) R-радиус описанной окружности около треугольник ABC.

R=OA

Рассмотрим треугольник DOA - прямоугольный

АО в квадрате = AD в квадрате - DO в квадрате

АО = 2 корня из 3

 

2) r-радиус вписанной окр-ти около трег АВС.

R=2r, следовательно, r=корень из 3

r=OK

 

Рассмотрим треугольник DOK - прямоугольный

DK = 4

 

Рассмторим треуг AKD - прямоугольный ( т.к. медиана в равнобедренном треугольнике является высотой)

АК=3, следовательно, АС=6.

 

S ADC=1/2 * 4 * 6 = 12

S б.п. = 12*3=36.

По-моему так.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Площадь боковой поверхности правильной треугольной пирамиды можно найти по формуле:

S = (1/2) * периметр основания * высота боковой грани.

Для начала найдем периметр основания пирамиды. У нас есть боковое ребро, которое равно 5 см, и это одна из сторон равностороннего треугольника, образующего основание. Поскольку у треугольника три равные стороны, то:

Периметр основания = 3 * 5 см = 15 см.

Теперь у нас есть периметр основания и высота боковой грани (которая равна корню из 13 см). Подставим эти значения в формулу:

S = (1/2) * 15 см * √13 см ≈ 32.5 см².

Площадь боковой поверхности этой пирамиды составляет около 32.5 квадратных сантиметра.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос