
В треугольнике АВС угол С=90°, угол А=30°, АВ=25. Найдите ВС


Ответы на вопрос

❤️❤️❤️




To find the length of side BC in triangle ABC, we can use trigonometric ratios. Since angle C is a right angle (90°) and angle A is 30°, we can use the trigonometric ratio for the sine of angle A and the cosine of angle A:
The sine of angle A (sin A) is defined as the ratio of the side opposite angle A to the hypotenuse (the longest side) in a right-angled triangle.
sin A = Opposite / Hypotenuse
The cosine of angle A (cos A) is defined as the ratio of the side adjacent to angle A to the hypotenuse in a right-angled triangle.
cos A = Adjacent / Hypotenuse
Let's find the lengths of sides AB and BC:
Given: Angle A = 30° Angle C = 90° AB = 25 (opposite side to angle A)
- Finding the length of side BC (hypotenuse): We can use the Pythagorean theorem, which states that in a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.
BC^2 = AB^2 + AC^2
Since angle C is 90°, AC is the adjacent side to angle A, and we can use the cosine of angle A to find its length.
cos A = AC / Hypotenuse cos 30° = AC / BC √3/2 = AC / BC
Now, let's substitute the values we know:
BC^2 = 25^2 + (AC)^2 BC^2 = 625 + (BC * √3/2)^2 BC^2 = 625 + 3/4 * BC^2
Now, let's solve for BC:
BC^2 - 3/4 * BC^2 = 625 (1 - 3/4) * BC^2 = 625 (1/4) * BC^2 = 625
BC^2 = 625 / (1/4) BC^2 = 625 * 4 BC^2 = 2500
BC = √2500 BC = 50
So, the length of side BC is 50 units.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili